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ABSTRACT 

 The purpose of this investigation was to examine the viability of Listeria 

monocytogenes Scott A NADC 2045 that endured selected environmental stresses and were 

then subsequently exposed to freeze-thaw cycles or high hydrostatic pressure.  The 

environmental stresses investigated in relation to freeze-thaw cycle survival include acid 

shock (HCl, pH 4.0-6.0), alkali shock (NaOH, pH 8.0-11.0), ethanol shock (2.0% -0.5%), 

oxidative shock (H2O2, 50-500ppm), and acid adaptation.  All shock stresses were applied to 

exponential phase cells whereas non-stressed exponential phase cells served as a control.  

Freeze-thaw cycles involved freezing at -18°C for 24 h and thawing at 30°C for 7 min.  

Injury evaluation for all freeze-thaw treatments were performed by comparing colony counts 

of the pathogen on tryptic soy agar supplemented with 0.6% yeast extract (TSAYE) to counts 

on modified oxford agar (MOX).  All samples were serially diluted (10-fold) in Buffered 

Peptone Water (BPW) and surface-plated on appropriate agar media.  Inoculated agar plates 

were incubated at 35°C and bacterial colonies were counted at 72 h.  Starvation of washed 

stationary phase cells in physiological saline (0.85% (w/v) NaCl) over 12 days was examined 

at 2-day intervals for viability and resistance to high hydrostatic pressure.  Starvation 

preparation involved the static growth of L. monocytogenes in tryptic soy broth supplemented 

with 0.6% yeast extract (TSBYE) and washing these cells twice in 0.85% NaCl.  Cells were 

then suspended in fresh physiological saline and held at 25°C during the starvation period.  

Pressurization at 400 MPa from 1 to 75 s was achieved using the Food Lab High-Pressure 

Food Processor (Stansted Fluid Power Ltd, Essex, U.K.).  Viability of pressurized L. 

monocytogenes was examined after serial dilution in 0.1% peptone and plating on TSAYE 

followed by incubation of 35°C for 48 h.  Control cultures were non-starved stationary phase 
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cells.  Results for the freeze-thaw cycles and environmental stresses indicate no statistically 

significance difference in freeze resistance or injury of the stressed pathogen compared to the 

control.  When examining controls, there was a decrease in viability after 1 cycle of 0.5 log 

CFU/ml and 0.74 log CFU/ml after 4 cycles.  This decrease occurred irrespective of any prior 

environmental stress tested.  No statistically significant freeze-thaw injury was found among 

cells that endured prior stresses or in freeze-thaw treated cells compared to control cells.  For 

starved L. monocytogenes, approximately a 2 log CFU/ml decrease was seen in viability after 

2 days of starvation.  Viability remained stable for the remaining 10 days.  Maximum D-

values (at 400 MPa) of 19.88 s, 18.6 s and 18.5 s were observed after 8, 6, and 10 days of 

starvation, respectively.  D-value (at 400 MPa) of the control was 11.85 s.  Overall 

significance of freeze-thaw results for the food industry is that freeze-thaw resistance of L. 

monocytogenes does not seem to be affected by certain prior environmental stresses on this 

pathogen.  Reductions after 4 freeze-thaw cycles in the controls were 0.74 Log CFU/ml, 

which represented a significant decrease in viability.  Based on the results of the present 

study, the exposure of L. monocytogenes Scott A to certain environmental stresses does not 

increase the resistance of this organism to freeze-thaw cycles.  Also, starved L. 

monocytogenes cells developed a higher resistance to high pressure processing compared to 

non-starved cells.  The increased high pressure resistance of starved L. monocytogenes 

should be considered when aiming to design safe food processing protocols involving high 

hydrostatic pressure  technology.     

   

 

 

 



www.manaraa.com

1 

 

INTRODUCTION 

 The food industry constantly searches for methods to reduce environmental and food 

contamination.  Foodborne pathogens pose a serious risk to populations both in our domestic 

and international markets.  Interest in discovering ways in which both pathogenic and 

spoilage microorganisms may survive current food processing methods is of growing 

interest.   

 Although many foodborne pathogens may generally cause illness, Listeria 

monocytogenes is an opportunistic organism that causes harm to individuals who are 

particularly vulnerable to disease.  Such individuals include immunocompromised persons, 

pregnant women, elderly, the very young, and hospital patients enduring therapies that 

suppress the immune system.  Recent 2011 estimates state that L. monocytogenes is 

responsible for approximately 1,500 illnesses and for 19% of all deaths related to foodborne 

pathogen infections in the United States.  These estimates suggest a rate of death around 

15.9%, where individual outbreak mortality rates may lend higher rates that cause serious 

public health concerns.  

 Stresses that L. monocytogenes are able to endure during infection of humans and 

animals, storage of foods, and survival in adverse environmental conditions may increase this 

pathogen’s virulence and its resistance to subsequent food processing interventions.  Historic 

and some novel processing interventions have been investigated and demonstrate increased 

resistance of L. monocytogenes to those interventions after exposure of this pathogen to prior 

environmental stresses.  This increased resistance due to prior stress exposure is commonly 

referred to as cross-protection as is seen throughout the microbial world.  Although not all 
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stresses elicit cross-protection, there is a need to investigate the potential for such resistance 

to occur.    

 Additionally, stressed microbial populations may or may not possess the ability to 

recover from injury inflicted by food processing methods.  This is of importance in 

determining the ability of the microorganism to proliferate and colonize in adverse food 

processing environments.  Also, injury of bacterial populations may lead to decreased 

survival when microorganisms are in foods with adverse intrinsic properties such as low pH, 

low water activity and antimicrobial constituents.  Measurement of injury provides important 

information on the physiological state of the microorganisms after stress exposures and has 

been demonstrated in relation to several food processing stresses.    

  Thorough investigation on cross-protection has not been investigated with the some 

physical interventions including freeze-thaw cycles and high hydrostatic processing.  Reports 

of L. monocytogenes freeze-thaw injury during cross protection and other studies have 

reported both the presence and lack of freeze-thaw injury.  Selected environmental stresses 

and their effects on the resistance of pathogens to conventional and emerging food 

processing methods still need investigation to ensure an elevated level of microbial safety 

within the food industry. 

 Given the precedence of cross-protection seen in published reports on stress-hardened 

L. monocytogenes, we hypothesize that L. monocytogenes exposed to selected environmental 

stress will elicit a resistance to subsequent freeze-thaw cycles.  We also hypothesize that 

stressed L. monocytogenes will display increased injury in populations of this pathogen that 

survive freezing.  The hypothesis related to high hydrostatic pressure follows the cross-
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protection theory: exposure of L. monocytogenes to selected environmental stresses will 

increase resistance to high hydrostatic pressure.   

 The objectives of this investigation are as follows: 

1) Evaluate the viability of L. monocytogenes that were exposed to environmental   

stress followed by freezing and thawing. 

2) Assess the freeze-thaw induced injury to L. monocytogenes that were exposed to 

selected environmental stresses. 

3) Evaluate the resistance of L. monocytogenes to high hydrostatic pressure following 

several days of starvation in physiological saline. 
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LITERATURE REVIEW 

Listeria monocytogenes 

History 

 Murray et al. (215) were the first to describe Bacterium monocytogenes, which 

infected monocytes and caused illness in laboratory rodents.  Just one year later, scientist 

Pirie (245) found a bacterium in South Africa that infected rodents as well and termed it the 

"Tiger River bacillus" or Listerella hepatolytica and acknowledged the similarities that it 

held with the discoveries from Murray et al. of Bacterium monocytogenes (278).  In 1940, 

Pirie declared  that the name for the described organisms Bacterium monocytogenes and 

Listerella hepatolytica be combined into one and called Listeria monocytogenes (246).  The 

disease caused by Listeria monocytogenes in sheep was called "circling disease" when 

circling movement of those infected animals were seen by Gill in 1926.  That same year 

Nyfeldt had isolated the organism from three humans.  As years followed L. monocytogenes 

was isolated from cattle, pigs and chicken as well (113).  Currently, L. monocytogenes is 

acknowledged as a significant foodborne pathogen which causes a high fatality rate in 

humans annually.  The focus of the food industry has been to control L. monocytogenes both 

in the food processing plant and in the food itself.       

 

Morphology and Identification 

 L. monocytogenes is a rod-shaped Gram-positive non-sporeforming facultative 

anaerobic bacterium.  This foodborne pathogen is marked by its small shape which measures 

0.5 µm by 1-2 µm (diameter by length).  L. monocytogenes has flagella at ambient 
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temperatures (20-25°C) and is noted as having a minimal amount of flagella at or near body 

temperature (37°C) (95).   

 Listeria as a genus has 8 identified species including L. grayi, L. seeligeri, L. 

welshimeri, L. ivanovii, L. innocua, L. monocytogenes, and two recently identified species L. 

marthii and L. rocourtiae (111, 169).  Identification of L. monocytogenes in food samples is 

commonly made using Pulse Field Gel Electrophoresis (PFGE) (34, 35, 38).   

 Traditional methods of identification can be used to differentiate L. monocytogenes.  

These methods examine several positive and negative results with the production of acid 

from various carbohydrates as well as testing for beta-hemolysis.  L. monocytogenes 

produces acid in presence of L-rhamnose and alpha-methyl-D-mannoside.  In the presence of 

D-xylose and D-mannitol no acid production is seen (25).  A test for beta-hemolysis which is 

positive in L. monocytogenes is called the Christie-Atkins-Munch-Peterson (CAMP) test.  

This CAMP test is a presumptive test and can be used in combination with fermentable 

carbohydrate tests.  The CAMP test uses Rhodococcus equi and Staphylococcus aureus 

which react and result in a display of synergistic hemolysis with L. monocytogenes.  

Proposed enhanced lysis of red blood cells is said to be due to the listeriolysin O (LLO) and 

phosphatidylinositol-specific phospholipase C (PI-PLC) and phosphatidylcholine-specific 

phospholipase C (PC-PLC) in L. monocytogenes and PLC in S. aureus and R. equi (196).  

The use of these biochemical, molecular and morphological identification tests allow for 

differentiation of L. monocytogenes.  The differentiation of L. monocytogenes is of 

importance to the food industry based on the implication this pathogen has on human health.               

 

Growth  Characteristics 
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 L. monocytogenes has a wide range of growth characteristics which can be attributed 

to its commonly referenced thermotolerance as well as its classification as a psychrotrophic 

microorganism (154, 155, 172, 214, 227, 228, 287).  Although these attributes differentiate L. 

monocytogenes from other non-spore forming bacteria, the following growth characteristics 

are generally seen in L. monocytogenes. Acknowledgment is made that continued research 

which involves strains with increase tolerances to temperature shifts, water activity, pH 

conditions and virulence expression exist (315). 

 

Temperature Range 

 Listeria monocytogenes can grow at a wide range of temperatures and is characterized 

as being psychrotrophic, due to its ability to grow at refrigeration temperatures.  One of the 

first exploitations of the psychrotrophic nature of L. monocytogenes was seen in the 1948 

while attempting to detect this fastidious bovine brain pathogen (114).  Compared to ovine 

infection, L. monocytogenes was noted as being less prevalent in bovine species.  With the 

development and use of cold enrichment, researchers had noted that many negative test 

results were actually false-negative once samples were placed at 4⁰C for some time (114).  

The use of cold enrichment to enhance the detection of L. monocytogenes can still be used 

today and was noted in the past literature as the “Gray’s cold-holding procedure” (331).  This 

ability to grow at low temperatures was one early indication that L. monocytogenes might 

have the ability to present a public health risk.      

 The range of growth temperatures for L. monocytogenes is from -1.5⁰C to 50⁰C (113, 

136, 156, 239, 324).  Junttila et al. (156) had performed research on Listeria spp. and found 
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that L. monocytogenes strains were able to grow at a slightly lower temperature overall 

compared to non-pathogenic species.  Temperature ranges that are optimum for growth of L. 

monocytogenes are between 25⁰C and 37⁰C (47).  The range is associated with variations in 

optimum growth biomass and population numbers of the pathogen (100, 249, 268, 308). 

 Extreme temperatures, above 50⁰C and below -1.5⁰C, pose conditions which are not 

favorable for growth and survival of L. monocytogenes.  Above 50⁰C, L. monocyctogenes 

begins to die (4).  Research investigating heat susceptibility of this pathogen has been 

performed at 52⁰C and above to exhibit more rapid microbial death curves (289).  Regarding 

survival at temperatures below -1.5⁰C, water activity seems to play an important role.  As the 

water forms into ice crystals, an increase in salts occurs.  Death of L. monocytogenes at 

freezing temperature is generally not seen as an effective  intervention kill step.  Freezing is 

most useful in the effect of preventing growth while causing cellular damage, which makes 

L. monocytogenes susceptible to higher concentrations of solutes in the suspending  

menstruum (14, 73, 230).  Further discussion of the effects of freezing on L. monocytogenes 

are made in later sections.        

 

pH Range 

 L. monocytogenes has a wide range of pH values over which it grows.  Optimal 

growth conditions are between pH 6.0 and 8.0 with some researchers stating a pH of 7.0 as 

the optimum pH for growth (37, 239, 271).   Shabala et al. (281) found that 25% of the 

strains tested were able to grow at a pH as low as 4.1 and 95% were able to growth at pH 4.2 

in HCl adjusted BHI broth.  Additional support for these low pH growth was seen by other 

researchers as well (241).  The upper pH range for growth was reported by Petran and 
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Zottola (239) to be pH 9.2.  Lethality of L. monocytogenes can be seen at pH values below 

3.5 (239).  L. monocytogenes has been observed having slight decreases in populations above 

pH 10.0 (166, 198).  Survival of L. monocytogenes is seen between lethality and growth pH 

values and this pathogen remains a very robust organism in terms of its ability to survive or 

grow in a wide pH range.   

 

Water Activity Range 

 Petran and Zottola (239) reported that the optimal water activity (aw) for growth of L. 

monocytogenes was ≥0.97.  Water activity levels that permit growth of L. monocytogenes 

include those greater than 0.90 for glycerol and 0.92 for both sodium chloride and sucrose.  

Researchers reported that growth of L. monocytogenes was dependent not only on water 

activity, but upon which humectants were used (205, 219, 305).  L. monocytogenes survived 

(up to 10 days) in fermented hard salami where the water activity was as low as 0.79 and up 

to 0.86.  This water activity of 0.79 could be set as the lower limit for survival of  L. 

monocytogenes.  Water activity at <0.79 might elicit a greater decrease in survival overtime 

(152).   

 

Virulence differs in different foods 

L. monocytogenes has been found in foods which are both nutritionally and 

functionally diverse (83).  It is evident that L. monocytogenes has the potential to 

contaminate many foods as well as survive in a variety of conditions.  Midelet-Bourdin et al. 

(203) found that when comparing L. monocytogenes grown in raw salmon, cold-smoked 

salmon, milk and “potted minced pork” extracts, the minced pork extract produced L. 
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monocytogenes that displayed decreased signs of virulence while viability of the 

microorganism did not decrease.  Additionally, this study and others (31, 147) have reported 

an increase in virulence factors when L. monocytogenes was introduced into minimal 

medium from a nutrient rich medium.  Other food compounds such as fats (69, 92) and 

lactoferrin, a glycoprotein present in milk, (11) have been shown to impact the ability for L. 

monocytogenes to colonize the gastrointestinal system.  This suggests that the variation in 

growth conditions, either from minimal to highly nutritious media or different food systems, 

may warrant an increase need for risk assessment.  Additional attention should be placed on 

the public health implications of the consumption of strains of L. monocytogenes (with 

decreased virulence) by immunocompromised populations (203). 

 

Epidemiology 

Natural environment and transmission of L. monocytogenes 

L. monocytogenes is ubiquitous in the environment and is considered a saprophyte 

whose natural habitat is decaying vegetation (113).  Samples from decaying plant material 

yielded isolation of L. monocytogenes from 7 of 12 samples.  Additional sampling over two 

years yielded isolation of L. monocytogenes from soils and plants, game animal feces, 

decaying feed materials, and birds (329, 331).  A survey of sewage, soil and fecal samples 

found a high prevalence of L. monocytogenes in sewage (60%) and low levels of the 

pathogen in soil (0.7%) and feces (0.6%) (188).  Urban and populated environments have 

been reported to contain L. monocytogenes as well.  This pathogen has been isolated from 

various urban environments including urban soils, leaves and debris, mulch, sidewalks, water 
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runoffs, puddles, rivers and streams, lakes, storm drains and trash cans (273).  Contaminated 

soil where survival of L. monocytogenes was seen upwards of 67 days may lend itself to 

contamination of water sources in contact with such soil (330).     

 Environmental water are likely sources of L. monocytogenes.  Studies found that L. 

monocytogenes was present in approximately 12% (Switzerland) and 10% (Canada) of water 

samples examined.  These studies indicate that contamination might not be completely 

random, but related to upstream contamination or other extraneous factors which may have 

contaminated the water (187, 274, 275).  Examining water sources that were closer to direct 

contact with the food system found that L. monocytogenes could be isolated from saltwater 

fisheries 2% of the time and fresh water fisheries 10% of the time.  An increase in positive 

samples to 16% and 68% were seen in fish slaughterhouses and smokehouses, respectively 

(118).  L. monocytogenes and other Listeria spp. were isolated from both waters and 

sediments in the Humbolt-Arcata Bay, California area (57).  This might reflect a general 

persistence within sediments that may last despite temporary interventions to decrease 

Listeria spp. in the waterways.  There exists a high likelihood of L. monocytogenes isolation 

from the environment.  Due to the wide-array of environments where L. monocytogenes has 

been isolated, it is easy to see how transmission onto animals and into food processing 

environments may occur. 

 To date, L. monocytogenes has been isolated from a large number of animals and food 

products.  L. monocytogenes has been isolated from 37 different mammals and 17 bird 

species.  In the human population, between 1 and 10% are carries of the organism (2, 256).  

L. monocytogenes has also been isolated from various food products including both raw and 

ready-to-eat (RTE) foods.  The RTE products in which L. monocytogenes have been detected 
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include cheeses (1, 109, 175, 181), vegetables and salads (15, 109, 173, 174, 177), fermented 

sausage (314), celery (68), deli meats (79, 93, 109, 176, 236), RTE seafood (109, 153, 204, 

322), paté (79), and ice cream (18).  Raw products in which L. monocytogenes have been 

detected include milk (265), beef (9, 15, 58), chicken (9, 15, 293), pork (9, 58), seafood (15, 

208, 220, 307), and lamb (12).  Both raw and RTE foods present a potential hazard for 

pathogen transmission through cross contamination and direct consumption of L. 

monocytogenes contaminated food.  Almost all areas of the food processing industry are 

affected by L. monocytogenes as a potential food contaminant.    

 Maintenance of dry environmental conditions where feasible in food processing may 

be effective in decreasing foodborne contamination by L. monocytogenes from the processing 

plant environment.  Wet processing environments are often present in food processing 

environments which use high amounts of water and constant application of sanitizers to 

control microbial contamination.  Large amounts of water are also used during certain types 

of food processing including fresh and fresh-cut vegetables and meats.  Wet environments 

offer a transmission vector for L. monocytogenes to cross production barriers (Fresh to RTE).  

It has also been noted that wet environments can hide evident sources of condensation drips 

and increase the likelihood of harborage of L. monocytogenes in cracked floor tiles or drains.  

In one processing plant, the rate of positive environmental Listeria samples was diminished 

to zero after implementation of dry processing interventions.  The birth of this paradigm of 

reducing Listeria positive environmental samples by moving from wet processing conditions 

to dry was termed “dryer is better” (310, 312).  Efforts such as dry processing environments 

might eliminate transmission of Listeria spp. within the processing plant, but might not 

eliminate the need for control of L. monocytogenes in foods.  Also, such an approach may not 



www.manaraa.com

12 

 

be practical in some food processing plants due to the necessary use of water to facilitate 

processing and proper cleaning and sanitizing of equipment and surrounding areas. 

 

Foodborne Listeriosis 

 Listeriosis, causative agent L. monocytogenes, has an increased infection rate with 

immunocompromised populations.  This includes youth as well as the elderly and those 

individuals that are pregnant or have preexisting infections or health conditions (AIDS, 

cancer, diabetic, etc.) (256, 272).  Where listeriosis is seen, 70% of patients can be said to 

have suppressed immune responses (182). 

 The infective dose of L. monocytogenes in humans varies depending on the person’s 

immune status.  The risk of contracting listeriosis from levels that are 100 CFUs or less is 

low for both at-risk populations and the general population (19, 54, 264, 291).  This research 

has likely been applied in regulatory agencies in both Canada and some European countries 

where levels below 100 CFU/g or ml are accepted in some foods (81).  Such regulations 

recognize the difficulty in eliminating L. monocytogenes from raw agricultural products and 

the relatively low risk in the consumption of small numbers of this organism. 

 Foodborne infection by L. monocytogenes occurs when an infectious dose of the 

pathogen is ingested via contaminated food.  Such behaviors as the use of antacids can 

reduce the natural acid barriers of the stomach to increase risk of infection.  Additional 

stomach related ulcer surgeries and drugs such as Nexium (Esomeprazole) which are 

designed to reduce the activity of proton pumps may also lead to increased risk of infection 

(133, 277).  Once L. monocytogenes has entered our system it acts as an intracellular 

pathogen and it has the unique ability to cross the placental barrier.  For these reasons many 
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scientist use L. monocytogenes as a model organism to intracellular survival of pathogens 

(272).   

 Virulence factors which are expressed by L. monocytogenes allow successful invasion 

and infection within cells.  Virulence factors such as internalin (Inl), listeriolysin 0 (LLO), 

and other hemolytic proteins, and ActA will be described in relation to enhancing L. 

monocytogenes survival within the host.   

 Initial interactions between internalins, surface proteins of L. monocytogenes, and E-

cadherin, a host receptor, allow for the pathogen to induce endocytosis which allows the 

intercellular activity of L. monocytogenes (59, 83, 201).  The entry into host phagosomes, 

host defense systems, is host induced and not necessarily pathogen induced.  InlA protein is 

of particular importance within the group of internalin proteins allowing entry into 

mammalian endothelial cells.  In mutants not containing other internalin proteins, but only 

InlA, invasion into cells was seen in InlA mutants and not in mutants without this protein 

(272).  A similar examination of genomes had shown that L. monocytogenes strains contain 8 

inl genes, (including inlA) which are not present in the genome of the nonpathogenic L. 

innocua genome (60). 

 Once entry of L. monocytogenes into the cells has occured, LLO is mainly 

responsible for release from the single layered member vesicle.  LLO is an extracellular 

proteolytic pore-forming protein that permits hemolysis of the vesicle.  This 60-kilodalton 

protein has been shown to be dependent upon the presence of cholesterol (99, 200, 256, 272).  

LLO is homologous protein to other cytotoxic proteins such as streptolysin O and 

pneumolysin (200).  The LLO has a relatively high lethality and is associated with increased 

lethality when expressed in L. monocytogenes (70, 99, 272).  The expression of LLO is 
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increased at pH 5.5 and not present at pH 7.0.  This indicates that when phagosome 

acidification occurs, increased expression of LLO will actually promote lysis and escape of 

L. monocytogenes into the cytoplasm (99). 

 Another set of hemolytic proteins are expressed in L. monocytogenes named 

phosphatidylinositol-specific phospholipase C (PI-PLC) and phospholipase C (PC-PLC).  

Unlike LLO, both PI-PLC and PC-PLC do not form pores.  These two proteins cleave 

phospholipids facilitating escape from vesicles.  PI-PLC mostly has a role in helping L. 

monocytogenes escape from the initial vesicle membrane (single layer membrane) because 

once L. monocytogenes begins cell to cell transmission the pathogen is located within a two 

membrane vesicle (272).    

 Once L. monocytogenes has escaped the first vesicle, the pathogen is able to replicate 

and use actin from the host cell cytoskeleton for motility within the cytoplasm.  The ActA 

surface protein is able to polymerize actin filaments at its surface and propel using a 

nucleated actin tail.  Depolymerization by the host cell occurs at an equal rate at L. 

monocytogenes polymerization leading the tail to appear at about an equal length during 

motility.  This movement between and within cells and a replication rate of once per 50 

minutes allows L. monocytogenes to effectively infect the host (272).   These virulence 

factors and means of motility ultimately make L. monocytogenes able to intracellularly infect 

the whole host and lead to listeriosis.  

 

Occurrences and Outbreaks 

 With the ubiquitous nature of L. monocytogenes, food processing plants have a 

difficult time ensuring that plant areas and foods are L. monocytogenes free.  This has 
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resulted in numerous outbreaks which have been examined by other authors (25, 32).  The 

following information describes several current outbreaks of listeriosis.   

 Lessons can be learned from the examination of past outbreaks.  The identification of 

processing, mechanical, or environmental errors which have led to an outbreak become a 

useful tool that can be used in avoiding future outbreaks.  By avoiding future outbreaks, the 

food industry and agriculture as a whole avoids condemnation from the public perception and 

avoidable public health risks to the population.  In the information that follows  a few 

prominent outbreaks relating to 1) Mexican-style cheese, 2) deli meat and 3) cantaloupe will 

be examined.  Of the three outbreaks, the second and third cases represent products that have 

a likelihood of being frozen for prolonged storage.    

 Between October 2008 and March 2009, an outbreak, with eight cases, of listeriosis 

was reported and epidemiological investigations trace the likely source back to Mexican-

style cheese.  The multiple state outbreak identified 3 cases in Illinois, 2 cases in Georgia, 

and 1 case in each North Carolina, Tennessee, and Wisconsin.  L. monocytogenes isolates 

that matched the outbreak strain had been found in plant locations, cheese samples and 

human specimens (146).  Although this cheese was pasteurized, post-pasteurization  

contamination from a production vat gasket contained a positive test for L. monocytogenes.  

Despite corrections to the process by removal of the causative vat, employee retraining, and 

modifications to employee traffic flow, Listeria contamination in the cheese persisted.  The 

production plant was closed, processing equipment was removed and a rupture in the wall 

that separated raw and finished product areas was noticed (146).  Although, no one source 

was named as the reservoir for L. monocytogenes in the plant, other studies have found that 

areas where moisture can easily build up can harbor L. monocytogenes in a processing plant 
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environment (310, 312).  This previously described scenario represents a perfect example 

how plant sanitation procedures may have failed in preventing the reoccurrence of 

contamination within a product line.  It also emphasizes the importance of preventing the 

initial introduction of ubiquitous microorganisms such as L. monocytogenes into a plant 

environment as they are often difficult to eliminate.             

 Another outbreak had occurred with ready-to-eat deli meats that were processed and 

packaged at a Canadian based Maple Leaf Foods processing plant in 2008.  The recalled 

products included roast beef, corned beef, turkey, and smoked products.  As with many large 

food processors, the food processor did not sell those products directly to the consumer.  

Consequently, many of the users across Canada which had incorporated these meats in other 

products had issued recalls as well.  Investigators eventually reported intricate meat slicing 

equipment (2 units) as probable cause of the outbreak (50).  The outbreak resulted in a total 

of 23 deaths from 57 laboratory identified cases (67).  This outbreak that claimed a 40% 

mortality rate, represents one of the reasons L. monocytogenes is seen with such importance 

in the realm of public health and safety.  In the case of food processor contamination, there is 

often a greater spread of outbreaks as products are centrally produced and widely distributed.  

This outbreak was linked to a meat slicing machine that contained parts which are difficult to 

clean.  This situation emphasizes the importance of engineering food processing equipment 

with special consideration of food safety and the routine use of proper disassembly for 

efficient cleaning and sanitizing of equipment.    

 As of September 21, 2011, an outbreak involving L. monocytogenes was identified 

and linked to cantaloupe which was grown in and distributed out of Colorado.  The outbreak 

which involved "Rocky Ford" brand cantaloupes has cause 55 illnesses in 14 states which 
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have been identified since August 4, 2011.  One infection has been found in each of the 

following states: California, Illinois, Indiana, Maryland, Montana, Virginia, West Virginia, 

and Wyoming.  Two cases have been reported in Wisconsin, four cases in Nebraska, eight in 

Oklahoma, nine in Texas, ten in New Mexico, and fourteen in Colorado.  All interview and 

publicly released information from ill persons indicate that all cases involved hospitalization.  

In this case or listeriosis, nearly all infections were associated with immune compromised or 

persons over the age of 60 (251).  Past researchers have examined cases of listeriosis 

infection and have occasionally seen melons as a potential risk factor in diets (320).  

Additional outbreaks involving in 10 listeriosis illnesses in 2010 were traced raw celery and 

an outbreak with sprouts in 2009 was also Listeria-associated (68, 87, 251) .  Cantaloupe, 

sprouts and celery, products which are harvested from within or on top of soil, have plenty of 

opportunities to come in contact with surfaces potentially contaminated with  L. 

monocytogenes.  The consideration of exterior pasteurization or cleaning remains difficult 

based on the porous and imperfect exteriors which  lend themselves to harboring soils.  The 

fact that these foods are considered ready-to-eat products and, unlike fresh meats, no 

intervention kill step for pathogens is applied to the fresh-cut product, is one challenge that 

remains in the prevention of future fruit or vegetable outbreaks. 

 Given the variety of sources that are harborage sites for L. monocytogenes and the 

variety of foods that are linked to listeriosis infections in humans, processing and 

environmental conditions offer adequate opportunity for exposure of the pathogen to 

environmental stresses.  In this regard, one must consider how stress-hardened  L. 

monocytogenes may adapt physiologically and develop an increased resistance against other 

stresses.      
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Stress Adaptation 

Introduction 

Foods and food processing environments may pose a set of challenges to 

microorganisms.  As there is a growing diversity of foods on the market, foods and their 

associated processing areas may also provide a diverse environment for microbial survival.  

The variety of foods and food processing environments may impose stress on the 

microorganisms that coexist in these environments.  In general, stress is encountered by 

microorganisms whenever an environment deviates from the ideal growth conditions.  In 

addition, stress is said to exist whenever microorganisms express deviations in optimal 

growth patterns, sub-lethal injury, or any alteration to optimal functioning  of metabolic 

reactions in the cell.  Stress conditions occur constantly in microorganisms in the food 

processing environment and may include physical, chemical and nutritional stresses.  Foods 

themselves may impose stress on microorganisms when one considers both intrinsic (pH, 

water activity, oxidation-reduction potential, available nutrients or inhibitory agents or 

barriers) and extrinsic factors (temperature, atmospheric conditions or competitive exclusion) 

that impact survival and growth of foodborne microorganisms.  Food environments present 

unique opportunities for microorganisms to encounter fluctuations in nutrient availability 

which may include the exposure to periods of nutrient deficiency.  Nutrient deprivation may 

occur in nature (outdoors) before the microorganism enters the food system or in production 

areas that may be difficult to clean.  Chemical stresses that include pH or toxin stress may be 

encountered directly from intrinsic properties of the food or from processing interventions 

applied to the environment as cleaners or foods as processing aides.  Food preservation and 
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processing conditions expose microorganisms to some specific physical stresses such as 

irradiation, high pressure processing, ultraviolet-light, pulsed electric fields and heating, 

cooling, freezing or thawing.  As one might imagine, these conditions provide many 

challenges for microbial survival (149, 298, 336).    

Despite these numerous physical, chemical and nutritional challenges, microbial life 

is abundant and proliferating throughout the food supply chain.  Given that some of these 

stresses do not fully inhibit microbial survival, microorganisms have adapted mechanisms to 

function in these diverse environments.  The degree of stress and adaptive response may 

vary, but survival and proliferation of cells can depend upon multiple parameters of the 

exposure including both time and the extent of stress exposure (336).  Bacterial systems are 

often studied in relation to model organisms which have traditional included Escherichia coli 

for understanding systems in Gram-negative bacteria and Bacillus subtilis in the case of 

Gram-positive bacteria (298).  Understanding bacterial stress response systems in adverse 

environments can be readily studied in the model organisms such as E. coli (142).  The stress 

response described in the sections to follow will focus on physiological responses to stress in 

relation to selected stress conditions that microorganisms may encounter in food processing 

environments.  B. subtilis will largely be used as a model microorganism in instances where 

information on stress responses may be limited or lacking for L. monocytogenes.  The 

sections will begin with a discussion of general stress regulation then proceed into discussion 

of responses to environmental stresses of pH (acid and alkali), oxidation, ethanol and 

starvation.  Many stress responses overlap, are complicated in nature and are not understood 

completely.  This overlapping of complicated stress responses can lead to cross protection of 

cells to multiple or subsequent stressed conditions.  These sections include a discussion of 
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topics relevant to the physiological responses in microbes and cross protection of bacteria 

against selected stresses from food processing environments.    

 

Overlying Bacterial Stress Response 

 The overlying response of Gram-positive bacteria to environmental stress is regulated 

through alternative sigma subunits or sigma factors.  These sigma factors, σ, and a core RNA 

polymerase are able to identify and bind to a DNA sequence that will enable the bacterium to 

make physiological alterations to endure an environmental stress (52).  Each group of σ 

factors identifies and binds to specific promoter regions.  Similar σ factors are grouped 

together as they bind to similar promoter sequences, initiate transcription and ultimately 

produce appropriate proteins.  In this case, σ
B
 is said to be functionally responsible for 

general stress responses.  The response and role of σ
B
 will be mentioned for it has been noted 

primarily in stress regulation (117).  The presence of the alternate sigma factor, σ
B
, has been 

identified in both B. subtilis and L. monocytogenes, but the characterization of σ
B
 has only 

been made in B. subtilis (161).  For this reason much of the focus of research has used B. 

subtilis as a model Gram-positive bacterium, but studies on L. monocytogenes have examined 

the cross protection that σ
B
 might confer.        

The regulation of σ
B 

is quite complex although the σ
B
 operon might only contain a 

few genes itself.  The σ
B
 operon contains the four downstream genes of rsbB, rsbW, sigB and 

rsbX (140).  Ten genes including these four and six other genes are said to add to the stress 

response in Gram-positive bacterium.  These genes can be divided into two general signaling 

responses.  These include rsbQ and rsbP which may be responsible for stress related to 

nutritional needs of the cell and rsbR, rsbS, rsbT and rsbU which responds to environmental 



www.manaraa.com

21 

 

stresses (88, 298).  Some of these genes are known to contain regulation of σ
B
 through both 

negative and positive feedback regulation.   

The complexity of this regulation has been seen as well.  The σ
B
 is known to 

coregulate 176 genes which emphasizes the complexity of the transcription that may be seen 

throughout stress responses in L. monocytogenes (51).  Additional, L. monocytogenes σ
B
 

regulons have also been studied and associated with the regulation of over 150 genes (116, 

253).  The role of multiple sigma factors is seen through the co-regulatory analyses 

performed indicating that perhaps multiple yet under researched sigma factors may have 

relevance in stress responses.  The sigma factor σ
54 

lacking in cells does not allow efficient 

uptake of carnitine, an osmoprotectant (226) and may play a role in cold response (179).  The 

σ
H
 seems to be functionally important in the presence of pH changes (240, 258) and σ

C
 may 

respond during temperature stresses (342).  Studies on characterization of subsequent sigma 

factors with respect to physiological implications and cross protection are at their infancy and 

warrant further investigation.   

Despite the presence of these other sigma factors, σ
B
 has received early attention due 

to the encoding gene sigB, which was identified through the homologous sigB gene found in 

B. subtilis (225).  Additionally, σ
B
 in L. monocytogenes may be an important sigma factor 

leading to virulence (337).  The σ
B 

remains highly investigated over the years.  Some studies 

that have examined the cross protective response in null σ
B 

mutants will be presented in 

subsequent descriptions of the physiological and cross protective response sections.           

 

Adaptation to Acid Stress 
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 Acidic conditions are prevalent in our environment equally as much as other adverse 

conditions (145, 184).  In the case of low pH there are particular situations in which 

microorganisms can encounter acidic conditions.  The conditions exist in two particular 

cases: 1) acid adaptation and 2) acid shock.  Adaptation conditions are a more gradual shift in 

pH over time, while shock occurs more rapidly and often for shorter periods of time.  One 

example of adaptation exists during fermentation of food products.  This can occur with 

vegetable products like olives where pH conditions are dropped to near pH 4.0 over extended 

days or even weeks (223).  More commonly researched, acid adaptation is referred to in 

fermentation of meat products  such as fermented sausages (138), or cheeses (45) where 

bioprocessing reduces pH according to regulatory measures and occurs over several hours 

(138).  These reductions in pH are not always sufficient to eliminate L. monocytogenes from 

contaminated food ingredients (90).  Additionally, some fermented meat processes 

incorporate the addition of molds to the exterior of the casings after fermentation to raise pH 

values between 6.0 to 6.3 (138).   

 In reference to the more acute acid exposure during acid shock, research has focused 

on acidic sanitizers, disinfectant washes on carcasses, and vegetable and meat dips.  These 

environments related to sub-lethal conditions include areas are not properly cleaned, use of 

less than the recommended amount of sanitizer (134), biofilms being exposed to sanitizers 

(24, 44), and Listeria spp. that are surviving in dust or on floor areas that are in hard to 

reach/clean areas in a processing environment or food establishment (26).  Each of these 

conditions can represent exposure and potential physiological adaptations to acidic 

conditions.  Significant care must be taken to ensure that acid stress does not induce 
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expression of protective genes or innate response in L.monocytogenes that procudes a stress-

hardened state in the pathogen   

 L. monocytogenes employs multiple mechanisms to withstand acid conditions.  These 

include general mechanisms to increase the pH within the cell, modification of cellular 

constituents, and regulation of genes.  General mechanisms includes the glutamate 

decarboxylase (GAD) system which decarboxylates glutamate to form gamma-aminobutyrate 

(GABA) which consumes a proton from the cytoplasm ultimately increasing the pH (131).   

The significance of the GAD system in L. monocytogenes was illustrated by Cotter et al. 

(63); mutants that did not contain the GAD system were significantly disadvantaged during 

subsequent acid challenges (61, 64).  Ryan et al. (270) identified a five-gene stress survival 

islet which encompassed the GAD system function indicating genetic regulation for growth 

in acidic (pH 5.2) and high salt concentrations (5% NaCl).  Additional regulatory systems of 

pH in the cytoplasm include the arginine deiminase (ADI) system that increases the pH 

through the conversion of arginine to ornithine and a F1F0-ATPase that maintains pH 

intracellularly through the extrusion of protons (62, 269). 

 Gene regulation also takes place when acid conditions are present and have noted 

control by alternative sigma factors within the cell.  Sigma B factor has an overriding role in 

homeostasis in a variety of environmental conditions (225).  Multiple survival genes, 29 

which facilitate DNA repair, are used during acid stress conditions (318).  Some of these 

genes facilitate the SOS response, recA, and are part of the nucleotide excision repair 

mechanism, uvrA, in L. monocytogenes (162, 317).  Additional mechanisms which find DNA 

binding proteins used to protect DNA during acid conditions are being uncovered (151). One 

unique acid triggered protein product by L. monocytogenes is Listeriolysin O (LLO) which is 
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used to evade host responses.  LLO, a pore-forming protein, is expressed by L. 

monocytogenes in the phagosome of the host during acidification (36, 160).  This signaling 

mechanism emphasizes the diverse genes that L. monocytogenes contains to ensure survival.   

Several membrane modifications have been described in acid stressed Listeria spp.  

Listeria cultures which were acid adapted over night to pH 4.7 displayed increased net cell 

hydrophobicity as well as decreased C15:C17 and anteiso:iso fatty acid ratios (210).  These 

modifications through acid adaptation lead to decreased ability for L. monocytogenes to 

adhere and have compounds infiltrate its membrane, and to decrease fluidity in the 

cytoplasmic membrane. The shorter chain fatty acids and increased protein concentration in 

the membrane are attributed to some of these cellular modifications (210).  Ultimately, such 

modifications of the cytoplasmic membrane might lead to cellular resistances to subsequent 

food processing interventions.          

Acid stress may induce cross protection to both chemical and physical food 

processing stresses.  Acid shock at various pH conditions (4.0-6.0) were tested for stress 

hardening in further acid challenges (165).  Researchers found that survival in an acid 

challenge at pH 3.5 was greatest when L. monocytogenes was habituated to pH 5.0, 5.5, and 

6.0.  Lou and Yousef  (184) found similar results when cultures were adapted to pH 4.5 and 

5.0 and challenged at pH 3.5.  Additionally, pH 4.5 and 5.0 allowed L.monocytogenes to 

survive inimical conditions of ethanol (17.5%) and hydrogen peroxide (500 ppm) (184).  

Adaptation to pH 6.0 or 5.0 resulted in the decreased survival in NaCl concentration of 

upwards of 20% (309).  Acid adaptation with citric acid stress hardened L. monocytogenes to 

trisodium phosphate and acidified sodium chlorite, but not to subsequent citric acid and 

peroxyacetic acid (7).  Moorman et al. (209) used L. innocua to demonstrate that cells 
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adapted to acid were more resistance to treatment with centrimide, a quaternary ammonium 

sanitizer. 

One study examined challenging a mixture of L. monocytogenes strains at pH 3.5 

repeatedly over 20 days (255).  Findings exhibited that over the days, resistance to acid 

treatment was being formed in the cultures.  The authors stated that this resistance was likely 

due to the formation of a subpopulation that was resistant rather than resistance mechanisms 

evolving, as one strain predominated after 20 days of treatment (255).  

 When examining thermal resistance, Farber et al. (82) and Lou and Yousef (183) both 

demonstrated that acid shock of L. monocytogenes drastically increased the pathogen’s 

resistance to heating both in milk at 58°C and in laboratory menstrua at 56°C, respectively.  

Although findings were similar, Farber et al. (82) had noted that shocking the cells for 1 hour 

exhibited equal and superior thermal resistance compared to 2 or 4 h of acid exposure.  The 

research team also demonstrated that heat resistance was neither enhanced nor reduced when 

gradual acidification was performed simulating conditions of food fermentation or adaptation 

to acid conditions. The type of acid used in the study had a great effect as L. monocytogenes 

had significant heat resistance when hydrochloric acid was used as an acidulant and not 

acetic acid (82).  Lou and Yousef (183) screened multiple low pH conditions and reported 

that pH 4.5 yielded the greatest thermal resistance.  With respect to resistance to heating in 

juice (watermelon, pH ~5.3), Sharma et al. (282), had shown acid adapted cells were less 

resistant to heating at 56°C; whereas no difference in heat resistance of L. monocytogenes 

was seen in cantaloupe juice (pH 6.3).  Despite these findings, thermal resistance of acid 

adapted L. monocytogenes was reported in various other juices (orange, white grape, and 

apple) (194).  
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 Research in the area of the effect of acid stress on the resistance of L. monocytogenes 

to non-thermal technologies has been reported.  After acid shock (3 h, pH 5.0), L. 

monocytogenes populations exhibited a resistance to UV light.  In both fresh brine (9% 

NaCl) and sterile distilled water, acid shocked populations were reduced 5 log CFU/ml while 

unstressed cells were reduced over 7 log CFU/ml (197).  Foley et al. (91) did not find 

irradiation resistance when using pH 5.5 for acid shocked L. monocytogenes.  Foley et al. 

(91) found that in seafood salad, L. monocytogenes was actually sensitized to irradiation 

treatments over time.  This can likely be attributed to the acid (pH 5.15) conditions of the 

seafood salad.  Acid shock (pH 4.5) treatments prior to high pressure processing was found 

to enhance resistance of L. monocytogenes (333).  These findings did not examine a variety 

of acid conditions and other pH values may need investigation to find pH of greatest 

resistance.  Stress hardening can be seen with acid stress in L. monocytogenes that encounters 

diverse environmental conditions.  The advent of new food and revisited technologies will 

require further investigation into acid stress responses. 

 

Adaptation to Alkali  

 The presence of alkali in the food processing conditions may occur in various 

environments.  Alkali cleaning solutions can be used to clean processing equipment.  Alkali 

(NaOH and KOH) based detergents are currently in use for cleaning clean in place (CIP) 

equipment, containers, milk bulk and pasteurizing tanks, food contact surfaces and floors.  

The pH values for these cleaners have been reported up to pH 12.6 at solutions of 1% of the 

concentrate, but recommended application levels range from 0.19 to 10%.  Research has 
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suggested that survival in cleaning detergents is possible (304).  Many of these alkaline 

detergents offer the advantage of being non-corrosive at lower concentrations and are 

commonly used in food processing environments where protein and fats may be abundant on 

equipment.  Sodium hydroxide, sodium metasilicate and sodium carbonate have all been used 

in the formulation of alkali food processing detergents (189).  The application of high pH 

chemical treatments in food processing has been seen as well (27, 29, 217, 280).  

 High pH has produced some morphological changes in L. monocytogenes.  In the 

presence of pH 12, bulging of L. monocytogenes was seen; however,  no apparent rupturing 

of the cytoplasmic membrane was noted after examination of the treatment media for 

cytoplasmic constituents (198).  The effect of pH 7.4 to 9.7 on the morphology of L. 

monocytogenes was made.  Alkali treatment resulted in cells that were longer, larger ended 

and had an increased volume.  Alkali treatment in a buffered media led to increases in L. 

monocytogenes length with a longer exposure time.  These studies also exhibited cells that 

were in chains and that some of the longer alkali pH exposures contained multiple nucleoids 

in cells (103).  Filamentous growth of L. monocytogenes was also seen when cells were 

exposed to alkali condition greater than 9 (144).  Membrane fatty acid composition increased 

to include more anteiso form of branched-chain fatty acids when L. monocytogenes was 

exposed to pH 9 (104).       

 The response of L. monocytogenes to alkali shock includes the expression of genes 

that enable the survival under these adverse conditions.  An analysis of gene expression in L. 

monocytogenes yielded an immediate upregulation of genes involving ATP-binding 

transporters and hydrogen ion antiporters.  Much of the upregulation involved transporter 

proteins and proteins related to metabolic function.  The metabolic proteins include pyruvate 
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dehydrogenase, gad and those involved in the degradation of amino acids.  A general stress 

response including chaperone proteins and σ
B
 expression was also identified as being highly 

involved in the response (106).  Along these lines, a specific calcium ATPase transporter was 

identified as having a likely role in alkali adaptation and survival in L. monocytogenes as 

well (84).  These studies support that L. monocytogenes may be able to alter metabolic 

function to increase acid production, increase transporter proteins and alter the ability for the 

membrane to withstand exposure to alkali conditions (229).  Mutants deficient in σ
B
 did not 

exhibit any outward morphological differences than the parent strain when exposed to alkali 

conditions.  This might indicate that alkali phenotypic response is not directly linked to σ
B
 

expression (103).  σ
B
 control in alkali shock response should not be disregarded.  It was 

shown that mRNA that was σ
B
 related was increased in alkali shocked L. monocytogenes 

(105).  A genetic response to the formation of filament-like cells in E. coli related to the SulA 

protein expression which was seen in the suicidal response of cells.  SulA may be implicated 

in a regulatory sequence that ultimately may cause the inhibition of cell division (311).  L. 

monocytogenes alkali tolerance was investigated using multiple mutant constructions.  

Results indicated that alkali conditions caused greater sensitivity in 12 mutants.  Although 

much is unknown about the exact function of the mutants, reduced transporter function or 

presence were thought to the reason for deceased tolerances to alkali conditions (97).  

Production of branched chain fatty acids was implicated as a alkali response that may cause a 

resistance to high pH conditions.  This was shown through mutants that lacked the ability to 

increase branched chain fatty acids rapidly and thus were unable to survive in alkali 

conditions (288).  Alkali response has some foundation in σ
B
 expression as well as specific 

stress responses seen phenotypically.    
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 Along with upregulation of gene expression, the cross protection of detergent or 

cleaner application and subsequent processing may occur.  L. monocytogenes previously 

exposed to alkali treatment resulted in cells that were resistant to thermal treatment compared 

to the control (303).  Thermal tolerance of alkali shocked L. monocytogenes was assessed 

using commercial alkali detergents as the alkali shock treatments.  The thermal responses 

were mixed with both sensitivities and resistances to heat noted after commercial detergent 

shock treatment.  When the alkali shock detergent treatment of L. monocytogenes was 

thought to only contain sodium hydroxide as the alkali agent, a thermal resistance was seen 

(304).  Alkali shock of L. monocytogenes resulted in a slight increased sensitivity to 

subsequent benzalkonium chloride, but did not have an evident impact on the resistance or 

susceptibility to chlorine or cetylphyridinium chloride (304).  Exposure of alkali stressed L. 

monocytogenes to pH 12.0 exhibited great survival compared to both an unstressed control 

and a mutant which lacked σ
B
.  Increases survival of alkali stressed L. monocytogenes was 

also seen when the pathogen was exposed to ethanol and osmotic stresses (102).  The 

implications of cross protection may involve increased resistance of pathogens to other food 

processing technologies and further investigations into the stress-induced response in 

microorganisms and its impact of microbial resistance to emerging food processing 

technologies are important.        

 

Adaptation to Oxidative Stress 

 Oxidative stress can be encountered by L. monocytogenes in multiple situations.  

During the aerobic respiration, bacteria produce toxic compounds which may act as oxidizing 
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agents.   These oxidizing byproducts of aerobic metabolism include hydrogen peroxide, 

hydroxyl radicals and superoxide (257, 298).  Other sources of the oxidative stress may be 

encounter by L. monocytogenes and other microorganisms.  L. monocytogenes can be 

exposed to oxidative stress upon invasion of a human host.  The immune response of cells 

can produce oxidizing molecules in an attempt to eliminate pathogens such can be the case of 

neutrophilic attacks on L. monocytogenes (143).  In some countries the additional of H2O2 in 

raw milk and liquid eggs is permitted.  The activity of hydrogen peroxide in the raw milk 

lactoperoxidase system has also been acknowledged (257).  The use of hydrogen peroxide 

and other oxidizing compounds (ozone, hypochlorite, etc.) in sanitizers and detergents have 

also been reported (189, 292, 298).  The impact of oxidative stress may be seen in the 

destruction of enzymes, proteins, DNA and cellular membranes (292, 298).    

 Microbial defenses are in place in an attempt to eliminate the effects of reactive 

oxygen species (ROS) (298).  A response to hydrogen peroxide in Gram-positive bacteria is 

the PerR repressor, which can detect concentration as low as 10 µM hydrogen peroxide 

(129).  PerR, a protein that can bind metals, is responsible for regulation of catalase, a Dps 

homolog, Fur and alkyl hydroperoxide reductase, which all act in the defense of ROS.  Fur 

has a relevant role is iron uptake in the cell.  Another repressor is OhrR in B. subtilis.  This 

regulation involves the enzyme organic hydroperoxide reductase  (Ohr) and plays a role in 

eliminating ROOH in cells.  OhrR is part of the family of MarR proteins which contains 

other proteins that are involved with pathogenesis and antibiotic resistance (298).  

Superoxide dismutase enzyme expression has an additional responsibility for ROS defense 

and is essential in the survival of L. monocytogenes upon the invasion of a host.  This gene, 

sod, expression acts to protect against superoxide that is present inside a phagosome (13).  In 
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E.coli, exposure to bleach induced a heat shock chaperone protein which can protect the cell 

from further oxidative damage (338).  The overlapping of several responses might suggest an 

interrelationship between oxidative and other cellular stresses (298).     

 Oxidative stress response has been under the control of PerR, OhrR and σ
B
.  Some of 

the responses were mentioned above (127, 298).  Hoper et al. (139) had shown that the 

expression of genes in ethanol expose may be linked to those seen in expose to ROS.  This 

study also showed that that multiple proteins including dps, sodA, spx, ycdF, yceD, yceE, 

ydaD and yqgZ supported an oxidative response.  These genes, when lacking, led to the 

inability to survive at 4°C (139).  The presence of PerR and Fur regulons during oxidative 

stress indicated a response to damage and/or repair of proteins and DNA (301).  L. 

monocytogenes lacking PerR exhibited a deceased survival during hydrogen peroxide 

exposure (259).   The presence of plasmids in L. monocytogenes that control expression of 

superoxide dismutase and catalase production may have an influence on the specific 

resistance of L. monocytogenes to oxidative stress in the environment.  Plasmids expressing 

enzymes that can detoxify oxidizing products may increase the ability for L. monocytogenes 

to survive in harsh conditions (143).  The upregulation of 26 genes in L. monocytogenes 

grown in UHT milk did not impact hydrogen peroxide sensitivity compared to cells grown in 

laboratory media (180).  The regulation of genes in oxidative stress response may lead to 

cross protection to subsequent stresses. 

 Exposure to oxidative stress may cause cross protection in microorganisms.  L. 

monocytogenes exhibited a thermal resistance after exposure to hydrogen peroxide stress at 

levels up to 500 ppm (183).  Oxidative stress (H2O2) resulted in stress hardening and 

increased resistance of the pathogen to lethal amounts of hydrogen peroxide (184).  The 
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exposure of L. monocytogenes to oxidative stress in the form of ozone did not alter the 

resistance to alkali treatments up to pH 12.0 compared to control cells (222).  Thermal 

resistance of oxidative stressed cells was reported in both E. coli and Salmonella 

typhimurium (56, 319).   

 

Adaptation to Ethanol Stress 

 The use of alcohol as a disinfectant can be found in food processing environments.  

Alcohol or ethanol based sanitizers are recommended in areas that must be kept dry.  A 

survey examining 117 food industry sites noted that 26% of facilities used alcohol based 

products.  This was the third most commonly used disinfectant reported in the survey (134).  

Ethyl alcohol is also found in food ingredient extracts as required by the federal regulations.  

An examples is vanilla extract, which requires that "ethyl alcohol is not less than 35 percent 

by volume" (85).  The use of alcohol wipes to sanitize thermocouples prior to temperature 

readings has been mentioned in the Food and Drug Administration Food Code (86).  The 

application of ethanol on pizza crusts is also permitted up to 2.0% by weight (66).  These 

situations represent a likelihood that alcohol or ethanol exposure to bacteria may occur in a 

food processing or production environment.  The ineffectiveness of 60 and 70% ethanol in 

food soil or organic matter to eliminate L. monocytogenes may represent an inactivation or 

lower exposure of alcohol to this microorganisms under real life food production situations 

(49) .  Ethanol shock may occur when concentrations are present at sub-lethal levels resulting 

in physiological responses in the cell as well as the potential for cross protection.  
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 Morphological  and physiological responses of the microbial cell can occur as a result 

of its exposure to ethanol.  Microorganisms may undergo a shrinking in cell volume.  Ethanol 

may act to aggregate and denature proteins.  Modest levels of ethanol may provide 

production of heat shock proteins that can protect against this protein damage (296).  Ethanol 

exposure in cells caused an appearance of membrane damage and instability as based on 

scanning electron microscopy (43).  A wrinkling and pitting in ethanol shocked cells was 

also seen by others (55).  Ethanol also can impact lipid ordering and increase stability of lipid 

bilayers (gel phase), effect enzyme function, increase permeability and decrease fluidity of 

the cells (316, 328).  Cell leakage increased when cells were exposed to low levels of ethanol 

for longer periods of time (55).  Morphological changes were accompanied by a cellular 

increase in catalase and osmoprotectants (296).  Additionally, exposure to ethanol enhanced 

the ability of L. monocytogenes to attach to polystyrene, and this enhanced attachment was 

likely linked to  regulation of σ
B
 and cesRK genes (112).  Protein production certainly may 

play a part in ethanol exposure response in microorganisms.   

 In Lactobacillus plantarum, ethanol shock in a strain that was able to overproduce a 

heat shock protein (hsp 18.55), caused a decrease in membrane fluidity.  An increase in 

membrane fluidity was seen with a deletion of this heat shock protein and ethanol shock (43).  

Production of heat shock proteins may be seen as a general stress response in overlapping 

alternate sigma factors (51, 89).  Ethanol may increase the permeability of the cytoplasmic 

membrane in L. monocytogenes and alter the function of the membrane.  Increased 

membrane permeability caused by ethanol resulted in an increase in sensitivity to stress 

treatments in combination with low levels of ethanol.  Membrane permeability was seen 

when ethidium bromide was able to penetrate ethanol-treated cells, whereas cells that were 
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not exposed the ethanol prevented penetration of this compound by the cell membrane (21).  

During a state of ethanol shock, the production of heat shock proteins may play a role in 

stability of the cytoplasmic membrane in L. monocytogenes.  The stabilization of lipids in 

membrane and membrane permeability and fluidity has been linked to the heat shock 

proteins that are also expressed during the ethanol shock response (43, 216).  These heat 

shock proteins have been reported to act intracellularly in protecting protein stability to 

prevent protein denaturation  which is associated with the antimicrobial mechanism of action 

of ethanol (216).  A protein that was indicated as a ribosome-associated chaperone protein 

protected  L. monocytogenes during heating and ethanol exposure.  This suggests that the 

antimicrobial mechanism of action of ethanol against bacteria may involve alteration of 

ribosomal function (30).  

 Cross protection may have a link to protein production resulting from ethanol shock.  

Ethanol induced the production of DnaK and GroE, which were also proteins produced in 

various other environmental stresses (heat, hydrogen peroxide, acid and nutrient depletion) 

(319, 325).  Hoper et al. (139) was able to identify 37 genes that were expressed when B. 

subtilis was exposed to 10% ethanol.  This assessment also linked many genes in ethanol 

shock to those in salt and cold exposure.  As these genes were linked to σ
B
 regulon, the stress 

response of ethanol shock may lead to cross protection to other stresses.  The σ
B
 alternate 

sigma factor is also responsible for Dps protein production in response to ethanol and heat 

shock.  Dps proteins bind to DNA during cellular response to certain stresses and probably 

enhances the stability of DNA to protect this vital macromolecule from oxidative damage.  

Expression of ethanol and oxidative response genes were also seen through the expression or 

other σ factors (122).  The expression of genes that may be regulated by HrcA include 
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multiple chaperone proteins, membrane-bound enzymes (proteases) and heat shock proteins.  

Expression of these similar genes were seen after treatment of salt and heat as well as ethanol 

in other microorganisms (316).  The relationship of multiple proteins whose production 

overlap in response to ethanol shock indicate that exposure of cells to ethanol may induce 

cross-protection of cells against other stresses.     

 Cross protection of ethanol shocked cells against certain stresses certainly results 

from the expression of the same genes for multiple stresses.  Thermotolerance of ethanol 

shocked L. monocytogenes was shown to be greater than non-shocked cells with 4-8% 

ethanol increasing resistance the most (183).  Ethanol shock resistance to subsequent ethanol 

treatment was also seen in other microorgansisms (55).  Resistance to heating was also 

observed in ethanol shocked L. plantarum (43, 316).  A similar heat resistance was seen in 

Vibrio parahaemolyticus with ethanol shocked cells, but freezing of the ethanol shocked cells 

actually decreased viability more than the control (55).  Ethanol shock from exposure to 5% 

ethanol provided greater protection to L. monocytogenes against subsequent treatment of 

acidic conditions at pH 3.5, ethanol treatment of 17.5% and oxidative stress of 0.1% 

hydrogen peroxide (184).  The impact of ethanol shock in L. monocytogenes has relevance to 

the food processing industry and has significance in cross protection as well.      

 

Adaptation to Starvation 

 Natural environments of microorganisms present several hurdles to microbial survival 

and growth including the fluctuating availability of nutrients.  As one could imagine, nutrient 

deprivation or starvation for microorganisms is likely to be more common than most other 

stresses.  The length of starvation may extend sometimes as long as weeks in the natural 
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environment (171, 244).  Bacterial nutrient limitation may occur in washed food processing 

environments including any food contact surfaces or areas of water accumulation (128, 224).  

Bacteria suspended in water may be a good representation of complete starvation (244).  

Starvation stress can induce a general stress response system and is linked to biochemical 

pathways in the stringent response system.  The stringent response system inhibits RNA 

synthesis for production of proteins associated with multiplication of the cell but allows the 

cell to divert resources to production of proteins to enhance cell survival.  These responses 

may be similar to those seen during stationary phase or osmotic stress.  The response to 

starvation remains quite intricate and involves multiple changes within the cell.  These 

changes have been studied in both B. subtilis and E. coli (244, 298). 

 Morphological and physiological changes occur during starvation of cells.  Bacterial 

cells become smaller and more rounded during starvation (326).  Similarly, during long term 

survival L. monocytogenes cells appear small and rounded as well (335).  This rounding and 

shrinking may increase the ability of the cell to absorb nutrients (171).  Wen et al. (335) 

observed condensation of the cytoplasm in L. monocytogenes that may be linked to a 

decrease of water activity in cells that were in long term survival.  Herbert and Foster (128) 

observed morphological changes to specific nutrient deprived L. monocytogenes cultures.  

Shortening and widening of the cells along with a decrease in partial septa present in the cells 

was observed after starvation.  A decrease in viability between 1 and 3 Log CFU/ml was also 

observed during starvation.  Cell wall synthesis was observed at the beginning of starvation, 

but not later in the starvation phase.  This led to the concept that shortening of the cells may 

be due to reductive division (128).  Studies involving  L. innocua demonstrated that a short 

24 h period of starvation was able decrease membrane fluidity.  Net hydrophobicity was 
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shown to be increased in starved L. innocua by means of n-hexadecane separation of the non-

aqueous phase and absorbance measurements (210).  Numerous physiological changes in the 

cell may be attributed to the increase in protein production.        

 The change to starvation state may induce a production of genes and proteins within 

the cell.  In the study of B. subtilis, the protein production from vegetative growth to 

starvation conditions differed by 68 distinct proteins.  It was noted that over 100 genes can be 

induced during starvation conditions and this limited number of proteins identified may due 

to the methods chosen or to the presence of overlapping genes expression (301).  Specific 

nutrient regulation by σ
L
, BkdR, TnrA and TRAP can be seen during nitrogen starvation 

(301).  Glucose starvation was seen to be controlled by such factors as CcpA, CcpN and 

AroR (301) and phosphate starvation may illicit a response of PhoPR production (301).  

General nutrient deprivation regulons include CodY, σ
B
 and σ

H
.  CodY and σ

H
 expression 

may have more of an impact on transition into stationary phase including cell wall 

metabolism, enzyme production for intracellular and extracellular degradation and protein 

production for chemotaxis and nutrient transport (207).  Although as illustrated above 

multiple specific stress responses can be seen during starvation, σ
B
 may encode for the 

general stress response protecting the cell from future harsh conditions that may arise (94, 

122).  

 General stress alternate sigma factors are seen in both Gram-positive and Gram-

negative microorganisms and represented as σ
B
 and σ

S
, respectively.  These sigma factors 

encode for katE, dps and opuE genes which are responsible for catalase, protective DNA 

binding proteins, and proline transport, respectively, and may aide in starvation survival 

(244).  Starvation in L. monocytogenes protects the pathogen against subsequent acid 
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exposure, where σ
B
 mutants had shown some relationship between this alternate sigma factor 

and acid resistance (128).  In E. coli, σ
S
 associated genes may be responsible for 

physiological changes seen during starvation such as shortening of cells (5, 167).  Other 

resistances in L. monocytogenes following starvation treatments have been reported.  For 

example heat resistance of starved L. monocytogenes and E.coli has been demonstrated (150, 

183).  Regarding fermented products, resistance to nisin and diacetyl combinations increased 

in L. monocytogenes after 14 days of starvation (224).  Mendonca et al. (199) demonstrated 

that starvation cross protected L. monocytogenes against electron beam irradiation in both 

saline and ground pork.  During prolonged suspension in laboratory media, termed long term 

survival, L. monocytogenes exhibited greater resistance to both thermal processing and high 

pressure processing (335).  As new and emerging technologies arise in the food industry, 

cross protection of starved cells should be tested to ensure safety of food products. 

 

Freeze-Thaw in Foods 

Introduction and Historical Use of Freezing 

 The effort to preserve foods by freezing dates back to 1000 BC in China.  In France, 

the first flavored ice deserts were served in 1534 and later development of documents 

outlined the preparation of ice treats in 1700 and 1768.  Artificial ice was first produced in 

1755 and in the 1870s and 1880s fish was one of the first products that were commercially 

frozen.  By 1881, the first international shipment of frozen meat took place between 

Australian and South American regions to Europe.  Early frozen foods consisted of meats, 

fish and butter until 1928 when Clarence Birdseye developed a contact freezer that allowed 
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for commercial production of his Birdseye frozen line of foods just one later.  The use of 

previous observations and experimentation with quick freezing and blanching of products 

allowed for frozen food preparations to maintain high quality and become widely available 

by 1937 (14, 186, 238).  Since frozen foods are often blanched or precooked before freezing, 

the use of high hygienic care must be taken to not contaminate these products prior to 

packaging.   

 

Impact of Freeze-Thaw on Microorganisms   

 The impact of freezing on bacterial cells is multifold and has a general purpose in the 

food industry of suppressing bacterial growth.  Although bacteria reside in a dormant state 

while being frozen, freezing and thawing of products has a lethal impact on bacteria.  The 

first impact thought to occur is the formation of ice crystals that can disrupt the membrane of 

cells when formed both internally in the cytoplasm and externally in the surrounding 

environment.  The lysis of cells from the rupturing and disruption of the membrane by 

physical formation of ice crystals is thought to occur during thawing (14, 96).   

 Ice crystal formation extracellular may not indicate immediate freezing 

intracellularly.  First the frozen state of cell is not seen usually until below -5°C.  Then a 

supercooling effect occurs internally which creates a pressure gradient with a higher pressure 

inside the cell compared to outside.  The unfrozen water within the cell can either freeze in 

place or can move across the pressure gradient and freeze externally.  When water freezes 

inside the cell, the pressure gradient is diffused when the temperature drops because a 

decrease in temperature leads to a decrease in pressure (73).     
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 When freezing rates are considered, slow rates allow great movement of water across 

the cellular membrane out of the cell.  A slower freezing rate is defined when temperatures 

take longer than 30 minutes to transition from 0°C and -4°C.  At this slower rate of freezing 

ice crystals are able to grow to a larger size in the medium surrounding microorganisms.  As 

the water is bound in the form of large ice crystals, high concentrations of solute accumulate 

extracellularly, which then can lead to water exiting the cell to create an osmotic balance.  

Within a cell, water content has decreased which dehydrates the cell and an accumulation 

solute (73).  

 When examining fast freezing rate, intracellular ice crystals can be seen.  The 

formation of intercellular ice crystals is dependent upon nucleation agents.  Nucleation 

agents are water insoluble and are sites where the formation of ice crystals can occur with 

ease.  The cellular membrane limits the nucleation of water that can occur between the inside 

and outside cell environments.  At temperatures near -15°C, nucleation can occur readily.  

This formation of intracellular ice crystal can cause great damage to the cells (73).  The 

overall nucleation of water limits the viability of thawed cells. 

 The injury and lethality of freezing occur primarily from the concentration of solutes 

and chemical compounds due to the removal of water during nucleation of diffusion as well 

as through physical damage to cellular membranes caused by ice crystal formation.  Cellular 

damage from freeze-thaw exposure may also involve the formation of reactive oxidative 

species which are formed during freezing and thawing.  The research in this area is still not 

well understood (14, 98, 130, 232, 297).  

 Thawing may also have an adverse effect on cellular viability.  When thawing, ice 

crystals increase in size which may lead to greater damage in cells that were rapidly frozen 
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and contain ice crystals internally.  The growth of ice crystals during slower rates of thawing 

in general may lead to more lethal effects.  The thawing of the mixture with a lower freezing 

point (concentrated solutes and environmental materials) may create an osmotic stress on 

microorganisms that are located in lower freezing point portions of the mixtures.  This 

osmotic stress is short lived as thawing continues (73).  

 Freeze-thaw cycles may exhibit stresses of cold shock with decreases in temperatures 

and of osmotic shock with the concentration of solutes and solution observed when water 

becomes bound in the form of ice.  There are several observed cellular modifications that are 

generally considered as a cold shock response.  With temperature downshifts, the production 

of cold shock proteins (CSPs) becomes evident.  Bayles et al. (22) and Phan-Thanh and 

Gormon (243) demonstrated that upwards of 38 CSPs are produced during cold shock.  

These proteins can vary in their role as RNA chaperones or protective proteins, transporters, 

signal promoters and translation enhancers (28, 137, 141).  With decreases in temperatures 

Escherichia coli and yeast produced trehalose, which serves as both a cryoprotectant and 

osmoprotectant (231, 298).  Modifications to increase membrane fluidity include reducing 

the higher melting point iso-branched fatty acids with anteiso fatty acids and decreasing fatty 

acid length (10).  Many reports including those previously mentioned in this writing suggest 

that a cold shock responses might be linked to cryotolerance (23, 46, 178, 179, 306, 332).  

One author found that regulation might actually be a component of thermoregulation in L. 

monocytogenes due to a decrease in cryotolerance in cultures grown at both 4°C and 25°C, a 

non-cold-shocked temperature (17).  As research continues in the area of cold shock response 

it is evident that mechanisms of survival are not clear.  Microorganisms may undergo many 

adaptations during either repeated freeze-thaw cycles or cold shock.   
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 Osmotic Shock is termed an effect of the concentration of solutions when water is 

removed in the frozen state, which is then termed the "solution effect" (96).  The solution 

effect is the impact on the suspending solution has on the cells when it is concentrated.  

Although the impact may include toxins or antimicrobials being concentrated in the system, 

here we will briefly discuss it in terms of solute concentration and osmotic shock to the cell.  

During the presence of high salt concentrations, L. monocytogenes exhibits an increased 

expression of sigL genes.  This sigma factor regulates over 77 genes including those that 

increase tolerance to osmotic stress.  The induction of these genes resulted in increased 

mRNA transcript as well (254).  Cold shock proteins (CSP) are also produced by osmotic 

shock.  These proteins have been stated as chaperone proteins that protect DNA and RNA 

during averse conditions.  The expression of some CSP during osmotic conditions is seen to 

increase as much as 4.4-fold (80, 279).  There is an apparent shrinking or decrease in cell 

volume during osmotic responses of cells as well (193).  The exposure to osmotic shock has 

been seen to alter upward of 59 protein expression rates in L. monocytogenes.  Some of these 

proteins have been implicated as transport proteins.  These transport proteins such as BetL, 

Gbu and OpuC transport compounds into the cell to maintain some intracellular volume as 

well as lessen the effects of solute concentrations.  These transporters can transport 

compounds such as glycine betaine and carnitine that may even help stabilize proteins 

intracellularly (71, 334).  The impact of osmotic stress is widespread within the cell acting in 

some areas that could ultimately protect the cell from damage. 

 During cold shock and osmotic shock microorganisms endure general environmental 

stress which may make survival and replication difficult.  The modifications mentioned 

previously allow microorganisms to endure stresses imposed by cold and osmotic shock.  
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During the period of decreased temperature bacteria undergo a reduction in membrane 

fluidity (viscosity), DNA modifications that have been implicated at reducing transcription, 

RNA modifications and increase strain on enzyme reaction rate (47, 298).   Cellular sites that 

are modified by cold and osmotic shock may be seen as targets for stresses that the cell 

undergoes.    

 Overall, general impacts on structural components of the cell have been noted in 

relation to survival of the cell.  One impact is the potential denaturation of proteins  Reasons 

for protein denaturation hypothesis include interacts of proteins upon dehydration of the cells 

that are altered once the cell is rehydrated damaging protein folding and functionality.  The 

proximity of proteins in a shrunken cell may increase proteins interactions that were once 

unlikely to interact (73).  Other scientists state that protein structure can be altered due to the 

concentration of solutes during the freezing process.  This may ultimately lead to protein 

function decline and reduced water holding capacity seen in whole muscle foods (6, 73, 191, 

266).  Other reactions during freezing have been reported in animal muscles including cross 

linking of proteins and hydrolysis and oxidation of lipids (266).  Other research suggests that 

weak covalent bond of lipoproteins may be impacted immensely by the concentration in cell 

constituents and changes while freezing concentrates constituents extracellularly.  Damage to 

the membrane of L. monocytogenes has also been observed through transmission electron 

microscopy.  Disruption of the cell wall in frozen and freeze-thaw treated cells has been 

shown to increase the sensitivity of cells to additional stresses as well as cause the release 

cell constituents to the environment.  During the loss of water from cells, the cell wall, and 

plasma membrane, may physical interact and this interaction has been implicated in reducing 

the survival of cells as well (73).   
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The impact of freezing and thawing on microbial cells due to the concentrated 

surrounding environments as well as the formation of ice crystals may be sub-lethal, or cause 

repairable injury, as well as lethality.  The material in this review is not intended to be an 

extensive, detailed description of microbial response to cold shock or osmotic stress that may 

be associated with freeze-thaw applications.  Instead the discussion that follows will merely 

examine the impact of freeze-thaw on L. monocytogenes as it relates to food processing.     

 

Impact of Freeze-Thaw Conditions on L. monocytogenes 

 L. monocytogenes has been of great concern to food industries that routinely use 

freezing to preserve foods and thawing to prepare the foods for consumption.  Freeze-thaw 

treatment has been shown to have lethal effects and in some instances, injury in L. 

monocytogenes.  In this regard the effects of freezing on L. monocytogenes warrants 

discussion. 

 The impact of freezing at -18°C (slow freezing) and -198°C (fast freezing) and frozen 

storage on fate of L. monocytogenes has been investigated.  Slow freezing and storage for 1 

month at the same temperature in phosphate buffer and tryptose broth resulted in L. 

monocytogenes population death of 87% and 54%, respectively.  These same treatments 

resulted in injury of 79% (phosphate buffer) and 45% (tryptose broth) in the surviving 

population.  Fast freezing and storage for 1 month resulted in very little death or injury of L. 

monocytogenes.  Fast freezing and storage at -18°C resulted in great lethality and injury 

compared to fast freezing and storage at -198°C.  Cycles of freezing and thawing resulted in 

decrease survival and greater injury in L. monocytogenes (77).  That same study 

demonstrated that the effect of ice crystal formation from rapid or slow freezing may have a 
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great impact on the survival of L. monocytogenes.  The importance of maintaining and 

minimizing temperature fluctuations in the cold supply chain can have an effect on L. 

monocytogenes survival as well.           

 A later study examined the impact of glycerol, lactose, fat, casein and salts on the 

survival and injury of L. monocytogenes.  After 24 hours, approximately 50% of L. 

monocytogenes were dead in phosphate buffered solution.  After 6 months approximately 

90% of the initial population were considered dead.  These results examined freezing slowly 

at -18°C.  In the presence of glycerol over 6 months, L. monocytogenes were protected 

against freezing, but immediate protection (within 30 min) was not seen.  Although 

protection (viability and injury) during 2 weeks and 6 months of frozen storage was observed 

with glycerol, casein, lactose and milk fat, glycerol provided the greatest protection over 6 

months of storage and the least protection after 2 weeks of storage.  Injury seen in L. 

monocytogenes frozen in phosphate buffer solution was approximately 65% after 24 hours of 

storage and 85% after 6 months of storage.  Salts had little impact on protecting L. 

monocytogenes from death or injury (77).  The protective effect of food components on L. 

monocytogenes has been demonstrated in both reducing lethality and injury in freeze storage.  

The reduction in impact on L. monocytogenes by individual components might suggest that a 

complex food matrix might greatly improve survival. 

 El-Kest (76) reported that strain and menstrua contributed to variation in survival and 

injury of L. monocytogenes following freeze-thaw cycles.  In that study, samples were frozen 

at -18°C and thawed at 35°C.  After 1 hour of freezing death in phosphate buffer resulted in 

lethality to 51-66% and injury to 6-51% of the population.  After 48 hours, 58-93% of L. 

monocytogenes had died and 32-48% were injured.  Another study by the same authors used 
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L. monocytogenes Scott A and reported death after 1 hour of freezing of 27% and injury at 

34% of the surviving population.  After 48 hours the fate of this pathogen was 55% dead and 

50% injury (77).  In both of these studies, death and injury of L. monocytogenes in tryptose 

broth and milk were decreased as compared to phosphate buffer suspensions.  Strain 

variation in lethality and injury of the pathogen in frozen and stored milk was evident and 

one strain exhibited great resistance in a laboratory medium compared to the food system 

(milk) (75, 76).  Strain variation might exist in resistance to injury and death following 

freeze-thaw treatment.  The study demonstrates that more complex matrices such as food 

might lessen the lethality and injury seen in L. monocytogenes.   

The impact of growth phase on freeze-thaw susceptibility has been reported (17).  

Azizoglu et al. (17) reported that the viability of 2 strains of L. monocytogenes was higher in 

late logarithmic and stationary phase grown cells compared to mid-logarithmic cultures.  

This resulted in decreases in over 2 log CFU/ml over 18 freeze-thaw cycles and ca. 0.5 log 

CFU/ml reductions after 6 freeze-thaw cycles in mid-logarithmic phase cells.  Stationary 

phase and late logarithmic cells experienced approximate population decreases of <0.5 log 

CFU/ml and between 0.5 and 1 log CFU/ml after 6 and 18 freeze-thaw cycles, respectively.    

In that study (17), no evidence of increased injury in the frozen and thawed 

populations were observed.  Comparison of plate counts on both TSAYE and modified 

Oxford selective medium was used in estimating injury in surviving populations of L. 

monocytogenes.  The freezing treatment consisted of 1.5 ml (TSBYE) at -20°C at a rate of 

0.039 ml/min. The thawing took place in a room temperature water bath for 10 min.            

 Freeze-thaw studies in other food systems produced variations in the viability of L. 

monocytogenes.  One study examined the viability of 2 strains of L. monocytogenes held at -
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18°C for 7 weeks.  Decreases in viability were not detected until the later 3 weeks of storage.  

After 7 weeks, approximately 2 log decrease in numbers of survivors occurred in both 

strains.  The impact of freeze-thaw on viability of  L. monocytogenes in ground beef 

prompted research on microbial protection offered by intrinsic food constituents (124).  The 

reduction of L. monocytogenes on hot dogs stored at -18°C and -20°C was insignificant and 

was not dependent upon hot dog formulation (248, 302).  Various thawing methods in hot 

dogs stored at -15°C over 50 days had no impact on survival of the pathogen.  Although, it 

was noted that pretreatment of the inoculated hot dogs at 4°C for 30 days led to an 

appreciable decrease in viability (<1 log reduction) (285).  Various other foods also caused 

the pathogen to exhibit increased resistance to freeze-thaw treatment (73).  This concept of 

food constituent cryoprotection was demonstrated in studies using casein, glycerol, and 

lactose previously mentioned.  The major ingredient composition, fat content, water content, 

etc., might supersede any minor formulation changes in regard to protective effects seen in 

freeze-thaw tolerance of microorganisms.  This has not been directly addressed and may be 

of research importance in food manufacturing where minor formulation changes are made 

frequently.   

 Additional research examined the effect of freezing on L. monocytogenes. The results 

of one study in ground beef indicated that no reductions in viability occurred in cultures 

frozen at -7, -14, and -18°C (221).  Ritz et al. (261) also tested citrate and phosphate buffers 

at pH of 4.5 and 7.0, respectively, and noticed that there was no difference in viability in L. 

monocytogenes following one freeze-thaw treatment across the same freezing temperatures 

(261).  A close look at the growth phase of L. monocytogenes during these studies indicated 

that stationary phase cultures were used.  Examination of the effects of freeze-thaw at these 
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treatments was not performed in exponential phase which might have yielded different 

results in the extent of survival of the pathogen.      

 The results of freeze-thaw cycles in 10% TSBYE were also examined.  One freeze-

thaw cycle at -20°C was able to reduce L. monocytogenes populations by 1.42 log in that 

menstruum.  Faster freezing rates of -196°C in liquid nitrogen resulted in no change in 

viability even after two cycles at this temperature.  At -20°C freezing in the presence of 

polysorbate 80, three freeze-thaw cycles resulted in 0.69 log reductions and six freeze-thaw 

cycles resulted in 1.4 log reduction of L. monocytogenes (65). 

 Other studies have examined the ability to see freeze injury and survival of L. 

monocytogenes.  The use a freeze-thaw treatment on L. monocytogenes resulted in less than a 

0.6 log reduction on nonselective media (48).  This study examined the use of various plating 

methods to enhance the recovery of L. monocytogenes that were injured by freeze-thaw 

cycles.  The comparison of MOX and Tyrptic Soy Agar (TSA) displayed differences in 

enumeration indicating injury from freezing at -15°C.  Recovery on a thin agar layer, which 

allowed gradual diffusion of selective agents, demonstrated increased recovery of injury 

colonies that were not statistically different from counts seen on TSA.  Freezing performed 

on pork surfaces demonstrated an increased rate of survival of L. monocytogenes further 

supporting potential protective effects of food matrices (48). 

 A study by Golden et al. (108) found that two weeks of storage at -18°C resulted in 

little decrease in viability, but significant injury was observed.   These results of viability, 

slight decreases, and injury between 72 and 82% were seen across various strains of L. 

monocytogenes.  These measures were performed with selective media that contained 8% 

sodium chloride as the selective agent (108).  Injury of freeze-thaw treated L. monocytogenes 
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was also seen when using selective enrichment broth compared to nonselective broth after 

seven days of -20°C storage (39).              

 Other microorganisms have exhibited resistance to freeze-thaw and related injury.  

Fungi may become dehydrated and produce cryoprotective compounds in the cells to 

increase the organism’s freeze-thaw resistance (170).  The use of glycerol and trehalose has 

proven effective in cryoprotection of L. monocytogenes and trehalose may also protect the 

pathogen under osmotic, heating and desiccation stresses (75, 78).  L. monocytogenes has 

been shown to produce trehalose, a carbohydrate which may enhance survival during adverse 

environmental conditions including freeze-thaw cycles (78).  Although extracellular 

production of cryoprotective compounds may not be present in adequate amounts or at 

particular growth conditions to elicit cryoprotection, the addition of these compounds to the 

environment may result in sufficient protection (17, 75).  Similar protection from trehalose 

and glycerol have been demonstrated in Escherichia coli and Lactobacillus acidophilus (72, 

294).   

 The freeze treatment of L. monocytogenes can strongly vary the impact on survival 

and injury.  The food matrix that is frozen can effect L. monocytogenes as well.  When 

determining the public health impact, food matrix must be considered.  The next section 

highlights studies where cross protection of L. monocytogenes to freeze-thaw cycles has been 

seen.   

 

Cross Protection with Freezing-Thawing in L. monocytogenes 

 Cross protection of environmentally stressed L. monocytogenes against freeze-thaw 

cycles has not been thoroughly investigated.  In fact, to my knowledge only few efforts have 
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been made to examine the resistance of stressed L. monocytogenes to single and multiple 

freezing and thawing cycles.  In one investigation the impact of growth temperatures on the 

resistance of L. monocytogenes to freeze-thaw cycles was explored.  Freezing and thawing 

after 18 cycles resulted in 0.83 log CFU/ml reduction in viable L. monocytogenes cells grown 

at 37˚C, 4.40 log CFU/ml reductions in cells grown at 25˚C and 4.39 log CFU/ml reduction 

for cells grown at 4˚C.  Although a similar trend was observed even in non-pathogenic L. 

innocua and L. welshimeri, some strain differences in freeze-thaw tolerances were noted as 

being significant (17).  The resistance to freeze-thaw treatments seen in cultures grown at 

37˚C could not be transferred to cultures grown at 4˚C when supernatant of the cultures 

grown at 37˚C was applied as the freezing menstrua of cells grown at 4˚C (17).  This might 

suggest that resistance is not due to extracellular production of compounds.  Another study 

(333) examined freeze-thaw tolerance of cold shocked (10°C for 4 h) L. monocytogenes 

under similar freeze-thaw treatments and reported increased resistance of the pathogen to 5 

cycles of freezing and thawing.  The study also indicated that tolerances may be partially 

attributed to sigma B regulation.  These studies demonstrate that L. monocytogenes grown at 

lower than optimal temperatures exhibits a decreased cryotolerance while cold shock 

treatment may result in resistance to freezing.  This difference may also be due to variations 

in strains used in the studies. 

 Azizoglu et al. (17) also examined L. monocytogenes grown on agar and in broth to 

determine if colony formation on surfaces impacted freeze-thaw tolerances.  Cultures of L. 

monocytogenes grown on either agar surfaces or liquid broth had shown resistance to freeze-

thaw cycles when grown at 4°C compared to the control grown at 37°C.  When comparing L. 

monocytogenes grown on agar and in liquid broth at 25°C, there was a greater resistance to 
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freeze-thaw cycles of the cultures grown on agar compared to cultures grown on liquid  (17).  

These results may lead to studies on the formation of colonies on food surfaces placed in 

temperature abused settings.  Further studies need to examine formation of colonies on 

surfaces relevant to environmental L. monocytogenes colonization.   

 Other studies demonstrated growth temperature dependence related to freeze-thaw 

tolerances.  In the case of Exiguobacterium spp., a permafrost isolated bacterium, growth at 

4°C induced a protective effect against subsequent freeze-thaw treatment of the organism.  

Also, agar growth at 24°C allowed for a resistance to freeze-thaw cycles that mirrored those 

seen in cultures grown at 4°C in broth (321).  Studies in Yersinia enterocolitica reported 

similar results as observed in Exiguobacterium spp.  Freeze-thaw tolerance was observed at 

both 4°C and 25°C when Y. enterocolitica was grown on agar compared to liquid at 37°C 

(16).  A 4°C cold stress for 4 weeks was applied to E. coli which then displayed a resistance 

to 4 freeze-thaw cycle (-20°C for 24 h and 21°C for 30 min) (74).  Resistance to freeze-thaw 

cycles were also observed in Saccharomyces cerevisiae following cold shock (231).  The 

various responses to freeze-thaw cycle dependent upon prior temperature treatment do not 

lead to clear conclusions across microbial species.       

The freeze-thaw response of acid shocked L. monocytogenes has been reported (333).  

This study examined the response of freeze-thaw cycle with prior acid shock at pH 4.5 only.  

The study did not indicate pH ranges tested or why pH 4.5 alone was determined for the 

shock application.  Freeze-thaw cycles were considered -20°C for 24 h followed by 30°C for 

2 min and repeated for 5 cycles.  The acid shocked cells did demonstrate a substantial 

resistance to freeze-thaw cycles.  The difference in survival was over 10 fold comparing acid 

shocked to untreated L. monocytogenes (333).  
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An additional study mentioned the use of alkali adapted L. monocytogenes and 

determined the freeze-thaw tolerance over time.  That study used -20°C for freezing along 12 

days and 37°C for 5 min as the one freeze-thaw cycle tested.  The study examined three 

alkali shocks and adaptations using pH 11.6, 10.0 and 10.4 and no significant lethality was 

observed after 12 days of frozen storage (302).  The experimental treatments varied greatly 

from those presented in research described in the present thesis.  The main question that the 

present research attempted to answer was as follows:  Does prior exposure of L. 

monocytogenes to alkali shock alter the pathogens resistance to freeze-thaw cycles?  In the 

study by Taormina and Beuchat (302) some of the alkali treatments were composed of 

multiple components (actual meat sanitizers) which may impose additional stress (due to the 

chemical nature of the sanitizer) in addition to alkali shock.  That study also did not examine 

freeze-thaw cycles, but tolerance of L. monocytogenes to frozen storage instead.  Additional 

differences represented in the study include their use of stationary phase cultures which were 

all exposed to cold (4°C) temperature in addition to alkali treatment.  The research question 

being proposed in the follow work addresses the freeze-thaw response of environmentally 

stressed L. monocytogenes, which includes the impact of various levels of alkali shock.        

The previously described investigations on the resistance of prior stressed L. 

monocytogenes to freeze-thaw treatments are a start to the research needed in the area of 

prior environmental stress and associated cryoprotection of L. monocytogenes.  The acid 

shock investigation did not examine pH ranges that might induce varied response of the 

organism to freeze-thaw treatments.  Considering the various levels of a particular stressor 

that a pathogen might experience in the food processing environment, it is important to 

investigate the organism’s tolerance to freeze-thaw cycles after it was exposed to various 
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levels of a particular stress.  With the low number of studies investigating cryoprotection of 

environmentally stressed L. monocytogenes the present research aims to increase scientific 

knowledge in this area.  

 

Use of Freeze-Thaw in the Food Industry and by the Consumer  

Freezing of meats is commonly employed in the meat processing industry..  Initial 

freezing of whole or half meat carcass can be observed to increase the preservation during 

handling, loading and transportation between companies or overseas (267).  Lawrie (168) 

acknowledged that in the production of lamb, carcasses may be broken down into small 

portions such as the shoulder and frozen.  Given the use of smaller portions and consumer 

trends in individual portions, producers then thaw (45°C for up to 2.5 hours) these whole 

shoulders for subsequent processing.  Once these larger portions of meat are cut 

into individual portions of meat, they are sometimes sold to consumers in a frozen state to 

increase shelf-life and salability to consumers (168).  This is an example of how multiple 

freeze-thaw cycles may occur in the meat industry.   

Once consumers purchase these portions, temperature abuse and improper 

defrosting/thawing methods have been reported in the literature.  L. monocytogenes has the 

ability to replicate if present in thawed products that are held at refrigeration temperatures 

and above.  Consumer transportation of food products from the supermarket may represent 

significant area for temperature abuse and thawing and refreezing in the home.  Data have 

shown that transportation with ice cream from the grocery to the home can take 0.5 hours and 

have a mean air temperature of 21.0°C (107).  Thawing practices in the home have also been 

reported.  Of those surveyed on thawing practices of hamburger patties, 16% stated that they 
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thawed raw hamburger patties on the counter and 56% thawed them in the refrigerator 

(242).  In Jamaica, a study found that 70.9% of those surveyed consumers admitted 

using room temperatures to thaw frozen foods (163).  Further evidence was compiled when a 

meta-analysis of studies found that 42.3% used improper thawing methods (234).   

Additional freeze-thaw situations can be seen due to the purchasing habits of hams in 

the food processing industry.  It is a common understanding in the meat industry that 

both hams and other meat protein (fish) have an increased seasonal demand and production 

need.  In the case of hams, this seasonality drives producers to purchase large amounts during 

low demand and low prices.  Hams are then stored in large freezer warehouses to ensure 

meat availability at a stable and sustainable price when the consumer demand increases (20, 

110, 252).  When seasonal needs peak and production needs increase, large scale thawing of 

these freezers occurs to enable the distribution or use of these hams in processing.  During 

the freezing process, temperature variation may occur within the freezers as well.  Examining 

traditional laboratory freezers, manufacturers state that auto-defrosting freezers allow a 

temperature change as low at 3˚C and as high as 15˚C (164).  A frozen ham may experience a 

variety of temperature that may encompass freeze-thaw conditions depending on the location 

of the ham within the warehouse, type of cooling system employed, and the size of the 

warehouse freezer.  When explaining the quality attributes scientist discussed that slight 

thawing can be seen with minimal temperature fluctuations.  This thawing leads to 

recrystallization of ice or larger ice crystals that are implicated in loss of quality.  This 

similar phenomenon is seen with freezer facilities that use air-cooled devices compared to 

pipe-cooled devices.  Additionally, in the distribution of frozen hams Kaale et al. (157) 

reported that temperature management during transportation and storage of chilled food 
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products can be difficult.  All of these factors can lead to multiple freeze-thaw cycles within 

a ham product.   

 Another way in which L. monocytogenes may encounter freeze and thaw conditions is 

in the environment.  When microorganisms are washed or unknowingly recylced within the 

environment they may be exposed to stresses (elevated growth temperature from infected 

animals, run-off from sanitized animal facilities, etc.) (17).  Organisms present in cooler 

climates that experience early freezes or continual freezes during the seasons may be 

impacted by freeze tolerance in pathogen populations present in the soils.  Since L. 

monocytogenes is ubiquitous in the environment it inevitably will be exposed to a variety of 

environmental stresses and may contaminate foods as a stress-hardened pathogen.  This in 

turn can lead to increased resistance of the pathogen to freeze-thaw cycles applied to food 

products.   

 The citrus processing industry also is compelled to acknowledge freeze-thaw impact 

on microbial survival when harvesting freeze damaged crops.  Economic devastation due to 

frosts has been noted in both 1963 and the 1980s and fueled research into uses of frozen and 

thawed raw citrus fruit pulp.  This fruit is still used in juice production to retain some value 

from a freeze damaged crop (185).  Although, in most instances juice products are 

pasteurized, the introduction of L. monocytogenes to a plant can occur when harvesting 

trucks drop off freeze damage crops for processing.  In instances where unpasteurized juices 

are sold, niche market production, introduction of L. monocytogenes resistance to the 

lethality of acid may be a serious concern (239).  Environmental freeze-thaw cycles may 

directly impact the food system.  Microbial soil populations can change with freeze-thaw 

cycles associated with environments (299).  A prolonged survival due to increases freeze-
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thaw resistance or susceptibility and presence in soils surrounding agricultural processing 

settings may lead to alter the life-cycle of L. monocytogenes as an environmental 

contaminant.  This in turn may be linked to an increased risk of L. monocytogenes in produce 

or livestock harvest from area with cold climates that experience periodic or prolonged 

freezing.  

 

High Hydrostatic Pressure  

Introduction and History 

 The food industry is highly focused on the needs and demands of the consumer 

market.  As of recent, consumer desires have moved towards decreased use of preservatives 

and lower levels of processing in foods.  Traditional foods, fermented meats and dairy 

products, salted fish, cooked vegetables and meats, etc., have had a place in history.  These 

traditional foods are perceived to be purer by consumers and often contain fewer food 

additives.  The category for some of the foods which involve reduced processing is 

minimally processed foods.  These minimally processed foods must ensure food safety 

without the use of additional additives or alterations to quality.  In this area the use of high 

hydrostatic pressure has emerged as a novel processing technique.  High hydrostatic pressure 

(HHP) is also termed high pressure processing (HPP) and ultrahigh hydrostatic pressure 

processing (UHP) in some case (257) and will be referenced interchangeably through the 

paper  as HPP.   

 The use of HPP is novel in its application, but has been in use since the 19th century.  

Hite (132) had applied HPP principles in an attempt to increase the stability of milk, meat 

and juices.  Initial studies, focused on milk preservation, used self developed pressure units 
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and achieved an extended microbial shelf-life for this product for up to 5 days at room 

temperature.  These studies noted that spoilage was not consistent with unpressurized sample, 

suggesting different microorganisms might be at fault for spoilage of pressurized samples.  

Early studies also examined the effect of heat and pressure which elongated the shelf-life of 

milk (132).  Although some research progress was made up until the 1980s, the Japanese 

made great efforts to use HPP in an attempt to find alternatives to radiation preservation, 

which was unfavorable to consumers.  In 1993, the use of HPP in Japan allowed the 

marketing of the first commercial products.  High acid jams and juices and low protein foods 

occupied much of the early investigations in the application of HPP, which was taken from 

other disciplines of research (Physics, Geology and Chemistry) and adapted to the field of 

food science (257, 263).  As high pressure in the food industry is still in its infancy there is 

much research that remains to be pursued.   The review below will discuss some of the 

research in the effects of HPP on biological systems and L. monocytogenes as it pertains to 

the food industry.   

 

Industrial Principles and Application of High Pressure Processing 

 The use of high pressure processing offers multiple advantages in processing over 

other technologies.  The use of high hydrostatic pressure offers a great amount of control of 

processing parameters, temperature, pressure, and time, over other commonly used 

technologies such heating where product quality and lethality are affected only by 

temperature and time of exposure.  The cost of HPP is said to be comparable to irradiation 

and less expensive than drying, smoking, salting and fermentation.  Although heating may 

have a lesser cost in processing, the processing impact and intensity of processing is much 
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less in HPP (125).  Along those same lines, there is noted decreased impact on nutrient and 

quality content of products.  The stability of vitamins and minerals is an extremely appealing 

attribute of HPP (53, 125). The stability of nutrients in HHP foods may be due to the impact 

on covalent bonds.  Pressures less than 2,000 MPa have little impact on covalent bonds seen 

in the primary structure of molecules such as vitamins, minerals, and peptides.  In the case of 

starch, alterations and gelatinization can be seen under pressure (125, 257).  The major 

impact of HPP is on ionic bonds, lipid bilayer structure, and hydrophobic interactions seen in 

secondary and tertiary structures of compounds and biological components.  This might also 

be a result of the physical compression seen during pressurization.  Compression can be seen 

and result in different and decreased function of compounds upon removal of pressure.  

Proteins, enzymes and membrane inactivation can be a result of disruption in these weaker 

bonds (257).  DNA has seen a stabilization under pressure as HPP may stabilize hydrogen 

bonding (123, 263).  The utility of HPP has been observed in the food industry and continued 

interest has arisen. 

 High pressure units have made an increasing impact in the area of food processing.  

As the need for fewer additives and cleaner labels are desired by consumers, numbers of HPP 

equipment have risen exponentially.  In 1990, only 1 industrially used HPP unit was in place.  

As of 2009, 128 HPP units are installed (41, 125).  The use of HPP equipment will only 

continue to climb as more research investigates potential uses for this technology.  Vegetable 

(33-35%), meat (28-29%), liquid beverage (15-17%), and seafood (15%) products continue 

to have the predominant uses for HPP in the food processing industry.  The application of of 

HPP continues to be aimed at inactivation of enzymes, preservation of appearance, increased 

shelf-life and most importantly increase post-processing product safety (41, 125, 190).  
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Current product usage includes processing of fruit juices, jams, jellies, sliced fruits, tofu, 

ham, shellfish, guacamole, salsa, fermented meats, RTE deli meats, salmon, surimi, poultry, 

pork, fish, spaghetti and rice (41, 192, 257, 263). 

 One of the unique processing advantages in HPP is that the rate of lethality or impact 

on the product is not dependent upon the dimensions of the product itself as seen in thermal 

processing.  HPP applies pressure isostatically transferring and ensuring equal distribution of 

pressure to the entire product (125, 190).  The instantaneous transmission of pressure to 

product which can either be liquid product (juices) directly placed into the vessels or 

packaged product (guacamole, RTE meat slices, etc.) is seen combined with a 10-15% 

shrinkage of the product under pressures seen in commercial usage.  Additional impact of 

pressure usage results in temperature increases in the vessel due to adiabatic heating of the 

product, which is seen at an approximate rate of 3°C/100 MPa.  The impact of compression 

and heating are reverses once depressurization occurs (257).  These characteristics of HPP 

differentiate this processing technique from other non-thermal and thermal processing 

techniques on the market.  There is also a great promise of HPP in leading the way as an 

effective method for food safety.  Below is a general discussion of the impact and lethality of 

HPP on bacteria as it relates to food safety followed by the impact seen in L. monocytogenes.  

  

High Pressure Processing Impact on Microorganisms   

 The impact of HPP on microorganisms is great and can lead to multiple sites of 

damage within a microorganism.  One way that HPP acts on the cell is the disruption of 

protein folding leading to denaturation.  As high pressure has an impact on weak bonds 

within a cell, protein structure which is often held together by hydrogen bonds can be 
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unfolded irreversibly when HPP is applied.  The HPP effect on weak bonds can also impact 

protein-protein interactions within the cell.  The presence of water in a system can also 

impact the denaturation process by interacting with regions of unfolded proteins preventing 

refolding.  This can result in the loss of function of enzymes associated with cell function and 

membrane transport as well (263, 343).  Additional research with pressures between 100 and 

220 MPa has shown dissociation of proteins and denaturation which impacted the integrity of 

the membrane.  In some cases protein modifications can lead to transmembrane pores, which 

can replace altered proteins.  Higher pressures irreversibly affected protein within the 

membrane and those below 100 MPa resulted in reversible impact on protein conformation 

and destruction (159).  Primary structures (peptide bonds) are not directly affected by 

pressure up to 1000 MPa (339).  In Salmonella, HPP altered proteins present in membranes, 

which suggests that HPP may target proteins during microbial inactivation (260).    

 Lipid structures are said to be one of the most pressure-sensitive cellular areas and the 

target of HPP inactivation in microorganisms (263, 339).  When exposed to pressure the lipid 

bilayer shrinks laterally and has a straightening of acyl-chains resulting in an increased 

thickness of the bilayer.  Additionally, the bilayer changes from a liquid-crystalline state to a 

gel-like state.  This gel state is displayed through an orderly structure of extended chain fatty 

acids.  An increased ordering of the membrane may cause proteins to be disassociated from 

the member as well (339).  Additional changes might occur in relation to the membrane 

which include the separation of the cell wall from the membrane which was observed in 

Lactobacillus (233). 

Ritz et al. (262) had used scanning electron microscopy (SEM) and observed bud 

scars in pressurized L. monocytogenes.  The images also noted that disruptions in cell 
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membranes might inactivate cells, but leave cell morphologically similar to unaffected cells.  

In this study, membrane integrity was not uniform within the cell population suggesting a 

resistance to pressure in some of the cell population.  The membrane potential decreased in 

cells that were pressurize suggesting some sort of damage to the cell membrane or the 

mechanisms that ensure homeostasis in the cells (262).       

Various studies have examined the role of HHP on protein synthesis, ribosomes and 

nucleic acids as well.  Protein synthesis is reversibly inhibited above 68 MPa (218).  Studies 

have shown that ribosome dissociation under pressure can lead to cell death.   During 

examinations of protein production, pressures 40-60 MPa were sufficient in dissociating 

ribosomes (115, 218).  Research of pressurized E. coli suggests that ribosome damage might 

be related to cell death (218).  Increasing pressure to levels used in the food industry may 

ultimately result in death of cells (53, 135).  Research has also shown that DNA stabilization 

occurs at lower pressures up to ~270 MPa.  Beyond this up to 1,000 MPa no denaturation 

was seen in DNA.  This was explained by potential volume changes seen in compression 

under hydrostatic pressure (123).  The compression is also suggested at stabilizing hydrogen 

bonds found in DNA, mentioned earlier (263).  Direct observation of yeast under pressure 

noted a 25% decrease in volume (compression) of the cells at 250 MPa and a 10% decrease 

in cell volume remained even after pressure was remove (237).  The Le Chatelier's principle 

on pressure suggests that reactions are favored under pressure when they involve a decrease 

in volume, while reactions involving an increase in volume are disfavored (53, 341).  This 

might suggest that DNA transcription and protein production under pressure might relate to 

volume they need to function.  In these instances, cell death might be better explained by 

damage to ribosomes caused by HPP.    
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 Although the determination of the primary impact of HPP on microbial life has not 

been elucidated, it is safe to say that HPP decreases cell viability by multiple mechanisms 

(286).  The role of HPP in the food system is ever growing and the application of this 

technology has already had a great impact on food product stability.  Application of this 

technology to L. monocytogenes in foods follows.  

 

Impact of High Pressure Processing related to L. monocytogenes in foods 

 The impact of food constituents and high pressure processing on L. monocytogenes 

has been examined and may have a significant impact on the extent of pressure that foods 

must undergo to eliminate this pathogen.  The food matrix can have a protective effect on L. 

monocytogenes.  The following will examine some factors which impact the barotolerance of 

L. monocytogenes in both foods and laboratory media. 

 Comparisons of the impact to L. monocytogenes regarding the amount of time, 

temperature and pressure have been made.  Pressurization of L. monocytogenes at 207 MPa, 

276 MPa and 345 MPa for 10 min at 25°C in tryptic soy broth with 0.6% yeast extract 

(TSBYE) resulted in reductions of 0.79, 0.85 and 3.05 Log CFU/ml, respectively.  Treatment 

of L. monocytogenes with the similar parameters of 276 MPa at 25, 35, 45 and 50 °C resulted 

in reductions of 0.85, 1.90, 3.60 and 8.08 Log CFU/ml, respectively.  Log reductions with 

increasing time at 345 MPa were 2.64 and 3.05 CFU/ml after 5 and 10 minutes of treatment, 

respectively.  Only moderate reductions were seen through both increases in pressures and 

times at a particular pressure.  This study demonstrated that moderate increases in pressure 

and time at low pressures may not have as much of an impact on L. monocytogenes as much 

as temperature increases above 35°C (8).  Low pressures for longer hold times have been 
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used to reduce any negative change in food quality; however, they produced relatively small 

decreases in cell viability (8, 202, 235, 250, 300).  That same study also examined the impact 

of decreased pH on the survival of L. monocytogenes.  It showed that with decreases in pH 

from 6.5 to 4.5 under pressure decreases in survival were also seen.  Lactic acid seems to 

have the greatest impact at reducing the viability of L. monocytogenes under pressure 

irrespective of strains and pH conditions tested (pH 6.5, 5.5 and 4.5) (8).  Various parameters 

(time, temperature  and pressure) can be used to effectively control the safety of food 

products.  Increasing temperature had a greater impact on L. monocytogenes survival during 

pressurization, but the addition of acids may also add to the safety of foods or ensure the use 

of low temperatures when processing acidic foods.    

 The use of model food systems to identify the impact of fats, proteins and glucose on 

L. monocytogenes under pressure has been investigated.  Bovine serum albumin (BSA) as a 

protein source at various concentrations in phosphate buffered saline (PBS) was used to 

examine the resistance of L. monocytogenes to high pressure treatments.  Multiple (3) strains 

were examined for resistance.  Overall at 375 MPa, higher BSA content served as a greater 

protective agent in all strains tested suggesting a protective effect when greater protein is 

present in a food system (286).  Examining the barotolerance of L. monocytogenes in various 

glucose concentrations lead to similar results.  The barotolerance of the three strains varied 

along with variation due to some of the concentrations of the glucose.  Ultimately, there was 

a greater resistance seen in all three strains that were suspending in 10% glucose PBS 

solution compared to PBS suspensions with 1, 2 and 5% glucose suspensions.  Protein (BSA) 

seemed to have a greater protective effect compared to glucose overall (286).  To see if fats 

served as a protective agent during pressurization, olive oil was chosen.  A 30% mixture of 
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olive oil with lecithin (0.75%) in PBS resulted in a greater resistance to pressure treatments 

in three strains of L. monocytogenes compared to pressurization in PBS alone (286).  

Protection from fat content in ovine milk was also observed in L. innocua (101).  This 

suggests that L. monocytogenes may have a greater chance of survival in complex food 

matrices that contain higher levels of glucose, lipids and protein.   

 The protective effect of salt or water activity on in L. monocytogenes foods has been 

demonstrated as well.  A study examined the impact of water activity on the survival of L. 

monocytogenes pressurized in two different types of cheese.  L. monocytogenes exhibited an 

increased resistance to pressure in the cheese with the higher salt content and lower water 

activity.  Considering that the two cheeses might have contained various other differences 

due to variations in the dry material content, a controlled study with one cheese and various 

salt additions (0-5%) was performed and supported the baroprotective nature of salt content.  

For 0% added salt (aw=0.984) and 5% added salt (aw=0.904) viable numbers of the pathogen  

after pressurization (400 MPa; 12°C; 10 min) were 3.61 and 6.69 Log CFU/g respectively.  

The viable numbers of the pathogen before application of high pressure was 7.12 log CFU/g 

in both cases.  That same study examined lactose and galactose for a protective effect during 

pressurization of L. monocytogenes.  The study did not produce a difference in viability from 

samples with or without lactose, but did reveal a protective effect against pressurization when 

5 mg/g galactose was added to the cheese suspension prior to pressure treatment (212).  

Similar protection to high pressure treatment has been attributed to higher salt content in 

hams that contained different amounts of salt (211).  Research with L. innocua in TSBYE 

resulted in a reduction of approximately 4 Log CFU/ml in 0.5% NaCl media, where only 

about a 1 Log reduction was seen in media at 3.5% NaCl after pressurization at 600 MPa for 
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5 min (20°C).  That study also demonstrated the protective effect of salt in oysters (290).  

The use of salt to in food processing is abundant.  Consideration of introducing HPP into 

processed foods with high salt content must be taken seriously as lower HPP parameters 

might not provide an effective kill step for L. monocytogenes when salt content is increased.  

 

Cross Protection with High Pressure Processing in L. monocytogenes 

 The effect of prior adverse growth conditions or exposure of L. monocytogenes to 

other stress may impact the antibacterial effectiveness of HPP against this pathogen.  There 

have been several studies that have delved into this topic of cross protection.  Some of these 

studies will be reviewed below.  

 The impact of prior growth temperature and its effect on barotolerance in L. 

monocytogenes has been researched.  One study examined various growth temperatures from 

4°C to 43°C and exposed each of these growth temperature treatments at stationary phase to 

400 MPa for 2 min at 21°C in UHT whole milk (283).  Stationary cells were used as they had 

been shown to provide the greatest pressure resistance in studies with L. monocytogenes 

(119).  A greater pressure resistance was observed in L. monocytogenes grown at 43°C 

compared to cells grown between 10 and 25°C.  There was a 6 Log greater reduction in 

viability of the pathogen  grown between 10 and 25°C compared to 43°C.  Also, a slight 

increase in growth temperature from optimal (35°C) to 40°C greatly increase resistance of L. 

monocytogenes to HPP in whole UHT milk.  Pressure resistance of stationary-phase L. 

monocytogenes  grown at cold temperatures (4 to 15°C) was not statistically different 

compared to its resistance when the pathogen was grown at 30 or 35°C (283).  Exponentially 

grown L. monocytogenes displayed a slight resistance to high pressure when grown at 8°C 
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compared to 30°C (195).  Those results indicate a greater susceptibility of L. monocytogenes 

to pressure in exponential phase of growth.  Elevated growth of L. monocytogenes at 43°C 

protected the pathogen  against subsequent pressure treatment (119).  The illness of an 

animal or lack of refrigeration leading to elevated temperatures in milk may render L. 

monocytogenes more resistant to HPP.  This is important when examining procedures to 

ensure the microbial safety of milk treated with this emerging technology.  

 Heat shock has been shown to elicit a barotolerant response in L. monocytogenes.  

This pathogen was heat shocked at 48°C in whole ultrahigh-temperature (UHT) milk for 

various amounts of time and exposed to pressurization at 400 MPa for 90 seconds at ambient 

temperature.  Heat shocking L. monocytogenes in UHT milk between 2 and 60 minutes 

resulted in an increased resistance to high pressure compared to the non-heat shocked cells.  

The greatest resistance to pressure was seen in cells that were heat shocked for 5, 10, 15 or 

30 minutes.  Another experiment examined the resistance in D-values at 400 MPa in L. 

monocytogenes heat shocked for 10 minutes in UHT milk.  Those experiments tested whether 

protein inhibition achieved through the use of chloramphenicol prior to heat shocking cells 

had an impact on barotolerance in UHT milk.  Heat shocked cells resulted in a D-value of 

126.8 seconds whereas, the control had a D-value of 35.3 seconds.  The D-value of the 

samples that were heat shocked with chloramphenicol did not differ from the control.  This 

demonstrated that barotolerance of heat shocked L. monocytogenes might be strongly 

associated with protein production (121).  E. coli exhibited a similar barotolerance associated 

with the production of heat shock proteins as well (3).  Heating is commonly used in the food 

processing environments.  When combining low heating prior to pressure we see a great 
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resistance to HPP which is of concern in food safety.  Special care must be taken when 

developing processes that might involve low heating of product prior to pressurization.  

 Examining the cold shock response of L. monocytogenes prior to HPP has also been 

investigated.  Exponentially grown L. monocytogenes were cold shocked for 4 hours at 10°C 

in brain heart infusion broth and then re-suspended in fresh media and tested for pressure 

resistance at various pressures for 20 minutes.  Pressure treatments at 200, 250, 300 and 350 

MPa all proved great resistance in cold shocked L. monocytogenes.  Lethality for unstressed 

cells was 100-fold greater than cold shocked cells at 300 MPa for 20 minutes.  Cold shock 

proteins (CSPs) were shown to be produced in both pressure treated and cold treated cells.  

Cold shock for longer periods of time, 20 hours compared to 4 hours, resulted in an increase 

of 4-fold and 1.5-fold in the production of CSPs, respectively.  CSPs were implicated as a 

possible explanation for the resistance seen to pressurization (332).  This is of concern if 

products were to be held at cold temperatures directly prior to pressurization.  Cold holding 

conditions might pose an increases food safety threat and processing conditions might need 

to be adjusted to increase processing lethality.    

 The effect of prior acid shock at pH 4.5 for 1 hour in exponentially grown cells on the 

barotolerance of L. monocytogenes has been examined.  Various pressures between 150 and 

400 MPa for 20 minutes were used.  The results indicated that increased pressure resistance 

was seen in acid shocked cells compared to non-shocked cells.  At 350 MPa, the survival was 

90% of the acid shocked cells compared to controls cells where below 0.0001% of the cells 

survived.  When sigB mutants were acid shocked and subsequently exposed to 350 MPa for 

20 min, population survival was more similar to the non-acid shocked control.  This indicated 

that sigB might play a role in the acid shock response leading to barotolerance in L. 
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monocytogenes (333).  The response of microorganisms to acid in relation to food processing 

is important because organic acids are widely used in food processing and cleaning and 

sanitation systems can use low pH cleaners or sanitizers to destroy pathogens.   

 Few studies have examined the influence of othe environmental stresses on the 

resistance of L. monocytogenes to high pressure processing.  The effect of growth at 

restricted water activity was investigated.  The results indicated that L. monocytogenes was 

sensitive to pressure when grown at aw<0.96 in laboratory media (212).  Hayman et al. (120) 

found similar results supporting the pressure protection of L. monocytogenes that previously 

exposed to lower water activity levels.  The literature has also shown that L. monocytogenes 

in "long-term-survival-phase" exhibited a resistance to HPP.  The "long-term-survival-phase" 

simulated growth cessation and survival in TSBYE up to 30 days (335).  To my knowledge 

research relating directly to the impact of starvation on barotolerance of L. monocytogenes 

has not been reported.        

 As the scientific literature lacks research on the impact of many other prior stresses 

on the barotolerance of L. monocytogenes, there is a need to complete our understanding of 

how environmental stresses that are common in food processing environments affect the 

barotolerance of L. monocytogenes.  Accordingly, the impact of starvation on barotolerance 

of L. monocytogenes Scott A was investigated. 
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MATERIALS AND METHODS 

Bacterial culture and culture conditions  

 Stock cultures of Listeria monocytogenes Scott A NADC 2045 stored at -80°C were 

thawed and streak-plated onto tryptic soy agar with 0.6% yeast extract (TSAYE).  Individual 

colonies from streaked plates were selected and grown at 35°C overnight in brain heart 

infusion (BHI) broth for freeze-thaw research and in tryptic soy broth with 0.6% yeast extract 

(TSBYE) for high hydrostatic pressure research.  These overnight cultures were used to 

prepare working cultures via preparation of two consecutive 24-h transfers into the 

appropriate broth medium (35°C).  

 

Inoculation procedure and exposure of cells to selected stresses    

 One ml of working culture was aseptically added to pre-warmed (35°C) 100 ml of 

BHI broth in 250 ml screw cap Erlenmeyer flasks.  All flasks were exposed to shaking (150 

rpm) inside a gyrorotary water bath (New Brunswich Scientific Co. Inc., Model G76) and 

held until cultures reached mid-exponential phase based on an optical density (OD) of 

approximately 0.50 at 600nm.  Stresses were then applied to the exponentially grown cells 

for 1 h at 35°C (shaking, 150 rpm) or for approximately 2 doublings of the control, (non-

treated cells).  Description of application of each individual stress is listed below.  This 

treatment of cells for 1 h with each respective stress was considered a short duration stress 

and thus indicated as a “shock” treatment and not a stress adaptation treatment.  Stresses that 

did not require exponential growth (acid adaptation and starvation) are described later in this 

section.         
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 All cells were harvested and washed the same way unless indicated otherwise.  After 

treatment of cells, they were harvested by centrifugation (Sorvall Super T21, 25°C, 10 min, 

10,000 x g) and washed twice in buffered peptone water (BPW, Difco).  Washed cells were 

placed (0.5 ml) into appropriately labeled sterile 15 ml conical tubes (Fisher Scientific) 

containing 4.5 ml BHI broth.  Tubes were then placed in freeze-thaw treatment or high 

hydrostatic pressure as described later. 

 

Acid Shock 

 Hydrochloric acid (HCl, Fisher Scientific, 12 N) was added directly to exponentially 

growing L. monocytogenes.  Each respective flask had a final concentration of 36, 30, 24, 18, 

and 12 and 0 (control) mM HCl, which represented acid shock treatment labels of pH 4.0, 

4.5, 5.0, 5.5, 6.0, and 7.0 (control), respectively.  An equal volume of each HCL solution or 

sterile distilled water (for control) was added to each flask to avoid variations in volumes of 

the culture.   

 

Oxidative and Ethanol Shock 

 Ethanol (100%) was added to exponential cultures to a final concentration of 2%, 

1.5%, 1.0%, 0.5%, and 0% (control).  Oxidative shocked cultures were achieved by the 

addition of hydrogen peroxide (Fisher Scientific, 3% v/v) to a final concentration of 500, 

250, 150, 50, and 0 ppm in respective flasks.     

 

Alkali Shock 
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 Sodium Hydroxide (NaOH, Fisher Scientific, 10 M) was added to separate flasks  to 

reach a final concentration of 70, 65, 55, 45, 35, and 0 (control) mM labeled respectively as 

pH 11, 10.5, 10.0, 9.0, 8.0, 7.0 (control).  The flasks had a range of pH values for pH 11 (pH 

9.48 to 9.99), pH 10.5 (pH 9.20 to 9.65), pH 10.0 (pH 8.61 to 8.71), pH 9.0 (pH 7.88 to 

8.10), pH 8.0 (pH 7.28 to 7.45), and pH 7.0 (pH 5.61 to 6.29).      

 

Acid Adaptation 

 Acid -adapted L. monocytogenes cultures were growth in tryptic soy broth 

supplemented with 0.6% yeast extract with 1% (w/v) added dextrose and non-adapted or 

control cells were grown in the same medium without dextrose.  Acid adapted and non-

adapted cells, were grown non-shaking for 20 hours in 250 ml flasks  each containing 100 ml 

of appropriate broth media.  The final pH values for cultures of acid-adapted cells varied 

from pH 4.20 to 4.32 and for non-adapted cells from pH 6.19 to 6.30.  The cultures were then 

harvested by centrifugation and washed as previously described.   

 

Starvation 

 L. monocytogenes was grown statically to stationary phase in 800 ml TSBYE (35°C).  

The cells were harvested by centrifugation (10,000 x g, 10 min, 4°C) and washed twice with 

0.85% (w/v) NaCl (physiological saline).  The pelleted cells were re-suspended in 0.85% 

NaCl and the cell suspension was held at 25°C in a sterile 2 L Erlenmeyer flask and sampled 

over 12 days in 2 day intervals.  These cells were considered starved.  Control cultures were 

prepared from overnight cultures (stationary phase cells)..  Samples were taken for viability 

as well as for high hydrostatic pressure treatment.   
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Freeze-Thaw Cycles 

 Freeze thaw method was used as indicated in the literature and described by 

Wemekamp-Kamphuis (333).  All freeze cycles were performed in 5ml BHI at -18°C in 

sterile 15ml conical tubes (Fischer Scientific).  Tubes were placed at this temperature for 

approximately 24 h in a Kenmore freezer model 253.9280213.  BHI broth (5 ml ) at this 

temperature reached -18°C within 5 h within the freezer.  Thawing took place by exposing 

the frozen culture for 7 minutes in a 40 liter water bath (Isotemp 228 Fisher Scientific) set at 

30°C.  Samples were then mixed by vortexing and sampled immediately for viable counts.  

After sampling, tubes were placed directly into freeze conditions.           

 

Application of High Hydrostatic Pressure  

 Samples (5-ml) of starved cells in 0.85% w/v NaCl were processed using High 

hydrostatic pressure (HHP).  The samples were heat-sealed in polyester pouches (400, 

KAPAK Corporatin, Minneapolis, MN, USA).  Pouches were pressurized at 0 MPa (control) 

and 400 MPa for 1, 15, 30, 45, 60 and 75 s at 25°C.  The pressurization unit used was a Food 

Lab High-Pressure Food Processor (Stansted Fluid Power Ltd, Essex, U.K.) that was 

operated with a 50% distilled water and 50% propylene glycol pressurization fluid (GWT 

Global Water Technology, Inc. Oakbrook Terrace, IL CAS Number 57556).  Temperatures 

within the pressurization vessel and pouches were measured with the Stansted fluid power 

FPG55000 RAP system and Scan 1000 Supervisory Control and Data Acquisition system 

(Hexatec, U.K.).  Temperature recordings indicated that a maximum temperature reached 

was 39.3°C with an adiabatic heating rate of 2.8°C/100 MPa.  The pressurization rate was 
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350 MPa/min and rapid decompression occurred. The pressurization occurred within 90 s 

and decompression occurred within 6 s.  

 D-values are defined as the time (at a given pressure) required for 1 log (90%) 

decrease in the initial viable population of L. monocytogenes.  D-values at 400 MPa were 

calculated from the slopes of the survival graphs (log CFU, y-axis versus pressurization time, 

x-axis).  The negative reciprocal of slopes of the survivor curves were taken and expressed as 

the D-values.     

 

Microbiological Analysis and pH 

 Freeze-thaw samples were serially diluted (1:10) in BPW and plated in duplicate on 

both tryptic soy agar with 0.6% yeast extract (TSAYE, Difco) and Modified Oxford Agar 

(MOX) for all treatments.  All inoculated agar plates were incubated at 35°C and bacterial 

colonies were counted after 72 h.  

 The percentage of injured L. monocytogenes survivors was calculated for all freeze-

thaw treated samples.  Injury calculations were performed using the following equation:     

 

 For all pH measurements taken, the supernatants were filter sterilized (0.22 µm, 

PTFE) and measurements were taken using an Accumet Basic model AB15 unit (Fisher 

Scientific).  Pressure-treated samples of cell suspensions containing starved L. 

monocytogenes  were serially diluted in 0.1% (w/v) peptone (Difco) and plated in duplicate 

on TSAYE.  Inoculated agar plates were incubated at 35°C and bacterial colonies were 

counted at 72 hours.   

% injured= count (CFU/ml) on TSAYE - count (CFU/ml) on MOX    
X 100

 

              count (CFU/ml) on TSAYE 
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Statistical Analysis 

 All experiments were replicated three times.  Analysis of data was performed using a 

modified mixed model PROCEDURE GLIMMIX in Statistical Analysis System software 

program version 9.2 (SAS Institute Inc., Cary, NC).  Normal distribution was used for all 

response variables.  Both linear and categorical comparisons were made over freeze-thaw 

cycles.  F-tests were used to test significance of treatment and day.  Tukey-Kramer pair-wise 

procedures were used when comparisons were made between two data points.  Significance 

was determined using adjusted p-values (significance 0.05).  
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RESULTS 

Impact of treatments on L. monocytogenes 

 All of the treatments, shock treatments (acid, ethanol, alkali and oxidative) and acid 

adaptation, did not statistically reduce the initial population of L. monocytogenes compared 

to the controls (P>0.05).  These comparisons are seen in Tables 1-5.  

 

Acid Shock 

 The actual pH values of the broth media containing acid-shocked exponential-phase 

L. monocytogenes ranged from pH 3.98-4.16 (for pH 4.0), 4.15-4.42 (for pH 4.5), 4.35-4.78 

(for pH 5.0), 4.67-4.98 (for pH 5.5), 5.03-5.32 (for pH 6.0), and 5.70-6.09 (for pH 7.0). 

Viability of acid- shocked L. monocytogenes was assessed after 4 freeze-thaw cycles (Figure 

1).  The impact of one freeze-thaw cycle on initial populations of acid-shocked L. 

monocytogenes was a decrease of 0.8315, 0.9440, 0.7762, 0.3811, 0.7766, and 0.8536 Log 

CFU/ml for cells exposed to pH 4.0, 4.5, 5.0, 5.5, 6.0, and 7.0, respectively.  The reduction in 

L. monocytogenes due to one freeze-thaw cycle was statistically significant for treatments pH 

4.0 (P=0.0176), 4.5 (P=0.0029), 5.0 (P=0.0396), 6.0 (P=0.0395), and 7.0 (P=0.0125) within 

each treatment.  Interestingly, there was not a statistically significant difference in decrease 

in initial viable counts of the acid-shocked (pH 5.5) pathogen following one freeze-thaw 

cycle (P=0.9661).   

Treatment decreases after 4 freeze-thaw cycles represented an overall decrease in 

treatment populations compared to initial populations.  These overall deceases were 0.9121 

Log CFU/ml for pH 4.0 (P=0.0050), 1.251 Log CFU/ml for pH 4.5 (P<0.0001), 1.0514 Log 

CFU/ml for pH 5.0 (P=0.0005), 0.3626 Log CFU/ml for pH 5.5 (P=0.9808), 0.8221 Log 
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CFU/ml for pH 6 (P=0.0203), and 0.9357 Log CFU/ml for pH 7 (P=0.0034).  Statistically 

significant decreases were seen in all treatments due to freeze-thaw cycles except with 

treatment pH 5.5, which did not produce a statistically significant decrease from the initial L. 

monocytogenes populations (P>0.05).  When viability of acid-shocked L. monocytogenes 

after 4 freeze-thaw cycles were compared to the control (pH 7), no statistical significant 

difference was found (P=0.05) (Table 1). 

 

Oxidative Shock 

 Oxidative shock treatments of L. monocytogenes resulted in viability changes which 

were monitored after the application of multiple freeze-thaw cycles (Figure 2).  Decreases 

after 1 freeze-thaw cycle from the initial populations in Log CFU/ml were 0.3361 for 0 ppm 

(control) (P=1.000), 0.1646 for 150 ppm (P=1.000), 0.5063 for 250 ppm (P=0.9924) and 

0.2387 for 500 ppm (P=1.000) treatments.  An increase of 0.02587 Log CFU/ml (P=1.000) 

was seen in cells shocked with 50 ppm prior to the first freeze-thaw cycle.  Decreases in 

viability in the initial viable populations of the pathogen were observed in all samples after 4 

freeze-thaw cycles.  Log reductions were 1.2159 for the control (P=0.2626), 0.5425 for 50 

ppm (P=0.9832), 1.3355 for 150 ppm (P=0.0217), 1.7741 for 250 ppm (P=0.0004) and 

0.8013 for 500 ppm (P=0.6399) samples.  Significant reductions were only seen within the 

treatments of 150 ppm and 250 ppm.  No significant reductions (Table 2) were seen when 

viable numbers of the treated cells were compared to those of control after 4 freeze-thaw 

cycles (P>0.05).             

 

 

Alkali Shock 
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 Application of multiple levels of alkali shock to L. monocytogenes was evaluated for 

its’ impact on freeze-thaw resistance (Figure 3).  Alkali shock of L. monocytogenes at pH 7 

(control), pH 8, pH 9, pH 10, pH 10.5 and pH 11 resulted in a difference in viability of -

0.04267 (P=1.000), -0.09967 (P=1.000), -0.76339 (P=0.7589), +0.1478 (P=1.000), -0.07576 

(P=1.000) and +0.08084 (P=1.000) Log CFU/ml after 1 freeze-thaw cycle, respectively.  

After 4 freeze-thaw cycles populations were changed by -0.1264 (P=1.000), -0.189 

(P=1.000), -0.9579 (P=0.3306), +0.1247 (P=1.000), -0.1988 (P=1.000), +0.00656 (P=1.000) 

Log CFU/ml in control, pH 8, pH 9, pH 10, pH 10.5 and pH 11 treated samples, respectively.  

Treatment viabilities compared to the control (Table 3) after 4 freeze-thaw cycles resulted in 

statistical similarity (P>0.05).  

 

Ethanol shock 

 L. monocytogenes shocked with various concentrations of ethanol were exposed to 4 

freeze-thaw cycles and viabilities were assessed (Figure 4).  Decreases in Log CFU/ml after 

1 freeze-thaw cycle for cells exposed to ethanol at 0%, 0.50%, 1%, 1.5% and 2% were 

0.8067, 0.8221, 0.7231, 0.7639 and 0.7359, respectively (P<0.05).  Log decreases of these 

treatments after exposure to 4 freeze-thaw cycles were 0.8949 for the control (0%) 

(P=0.0010), 0.7068 for 0.50% (P=0.0014), 0.5116 for 1% (P=0.0670), 0.445 for 1.5% 

(P=0.3756) and 0.6413 for 2% (P=0.0055) (Table 4).  Some statistical difference was seen 

within treatments, but viability of treatments after 4 freeze-thaw cycles were not significantly 

different compared to the control (P>0.05).   

 

Acid adaptation 
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 Viability of acid adapted and non-adapted L. monocytogenes was compared following 

freeze-thaw cycles (Figure 5).  Non-adapted cells exhibited Log CFU/ml decrease of 0.1934 

and 0.4807 after 1 and 4 freeze-thaw cycles, respectively (P>0.05).  Acid adapted cells 

decreased 0.07473 and 0.1768 Log CFU/ml after 1 and 4 freeze-thaw cycles, respectively 

(P>0.05).  Statistical decreases were not observed in initial cell counts and any freeze-thaw 

cycle with both adapted and non-adapted samples (P>0.05).  Comparison (Table 5) was made 

between L. monocytogenes of the non-adapted and acid adapted cells after 4 freeze-cycles 

and no statistical difference was seen (P=0.9155).          

 

Freeze-thaw cycles alone 

 Viability of L. monocytogenes after freeze-thaw treatments was assessed for all 

control treatments (Figure 6).  Log reduction after 1 freeze-thaw cycle was 0.4974 Log 

CFU/ml (P=0.0144).  Log reduction of 0.74 (P=0.0002) was observed after 4 freeze-thaw 

cycles and represented the lowest viability of all freeze-thaw cycles compared to the control 

(non-freeze-thawed cells) (Table 6).  All freeze-thaw cycles produced a statistical significant 

difference in viability of the pathogen compared to viability of the control (P<0.05), but were 

not statistically different among treatments after each application of a freeze-thaw cycle 

(P>0.05).   

 

Freeze-thaw injury 

 Percent injury was assessed for each shock (acid, ethanol, alkali and oxidative) and 

acid adaptation treatment and control (Tables 7-11).  Percent injury values varied greatly, but 
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no statistically significant differences were found either due to freeze-thaw cycles or 

treatments (P>0.05).       

 

Survival after starvation  

 Figure 7 shows the viability of L. monocytogenes Scott A NADC 2045 over 12 days 

of starvation in 0.85% (w/v) NaCl.  There was an initial decrease in viable counts from 9.42 

to 7.74 Log CFU/ml, (1.68 Log CFU/ml reduction) from Day 0 (control) to Day 2 of 

starvation (P=0.0023).  Statistically significant differences (P< 0.01) were observed on 

comparing the viability of non-starved L. monocyogenes (control) with that of starved cells of 

the pathogen in 0.85% (w/v) NaCl for 2 to 12 days.  No significant differences in viability of 

L. monocytogenes were observed after 2 days of starvation (P>0.100).  

 

Log reductions after 1 second of high hydrostatic pressurization (400 MPa) 

 Log10 reductions in initial viable counts of both L. monocytogenes control and starved 

cells that were exposed to HHP (400 MPa) at 25⁰C for 1 second are shown in Figure 8.  

Reductions in initial viable counts of starved cells following pressure treatment were 

substantially lower during days 4 to 12.  Log reductions for L. monocytogenes Scott A were 

greatest on Day 2 of starvation.  In this regard a 3.34 Log CFU/ml reduction in initial viable 

count was observed.  Pressure treatment of control (non-starved) samples under these 

pressurization conditions resulted in a 2.92 Log reduction.  The lowest reductions after 1 

second of pressurization were seen after starvation for 4, 10 and 12 days, with reductions of 

1.36, 1.10 and 1.29 Log CFU/ml, respectively.  Statistical similarity was seen between most 

samples except Day 2 of starvation.  



www.manaraa.com

80 

 

A trend of decreasing Log reductions was observed as L. monocytogenes Scott A was 

starved for more than 2 days.  This trend proved statistically significant with a decreasing 

slope over days of -0.1529 (P=0.0025). 

         

HHP D-value analysis of starved L. monocytogenes 

  D-value (time at 400 MPa for achieving 90% reduction in numbers of viable cells) for 

L. monocytogenes at each day of starvation in 0.85% NaCl is shown in Figure 9.  The D-

value for control (non-starved cells; Day 0) samples was 11.85 seconds. At 2 days of 

starvation the D-value increased by 2.47 seconds.  The highest resistance compared to the 

control was seen at 8 days of starvation; D-value=19.88 seconds (P=0.0321).    After 10 and 

12 days of starvation the D-values were 18.55 and 17.28 seconds, respectively.  There were 

no statistically significant differences in other D-values (at days 2, 4, and 6) compared to the 

control; however D-values consistently increased with increased starvation time between 

during 2 to 8 days. 
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DISCUSSION 

 Food processing environments offer many opportunities for the induction of stress 

response in microorganisms.  The food industry may use minimal processing technologies 

which can present stresses in food processing systems.  Stresses may enhance and cross 

protect against other stresses.  With regard to freeze-thaw (19, 340)  and high hydrostatic 

pressure applications (123-125, 339, 340, 342) some stresses have been investigated on the 

impact of cross protection or stress hardening in L. monocytogenes.   

 The assessment of freeze-thaw tolerance in foodborne pathogens that have endured 

prior environmental stress has received little attention over the years.  There are federal 

regulations regarding freezing of foods and freezing is even considered an “antimicrobial 

agent” by the United States Department of Agriculture (313).  Nevertheless, Archer (14) 

suggests that freezing has been overlooked for consideration as a treatment that may impact 

microorganisms greatly.  The presence of L. monocytogenes remains a public safety issue in 

foods and care must be taken when handling products to ensure the safety and prevention of 

outgrowth of this psychrotrophic bacterium.  Exposure of foodborne microorganisms to 

freeze-thaw cycles in the food industry occurs in the processing of meats (especially hams), 

smoked salmon (247) and during transportation and storage of foods (107, 157, 168, 267).

 The research presented in this thesis aimed to address if prior stress on L. 

monocytogenes Scott A affected the survival of the pathogen after its exposure to subsequent 

freeze-thaw cycles.  Examination of the effect of freeze-thaw cycles on viability of L. 

monocytogenes after the pathogen was exposed to each of the stress condition was performed 

(Figure 1-5).  None of the prior stress treatments elicited a resistance to freeze-thaw cycles 

tested.  Acid pre-treatment of L. monocytogenes (Table 1), pH 5.5, produced a slight 
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resistance of the pathogen to freeze-thaw cycles.  This resistance within treatment to freeze-

thaw cycles was not seen when comparisons were made to the control.  There was no 

statistical significant difference in freeze-thaw resistance of L. monocytogenes (exposed to 

pH 5.5) and that of the control.  Other researchers (333) have found that acid shock (pH 4.5 

for 1 h) of L. monocytogenes resulted in an increased resistance of the pathogen over 5 

freeze-thaw cycles.  Experimental freezing and thawing conditions were similar to the 

current study as were the acid shock pH conditions.  In the current study, pH 5.5 treatment 

ranged from pH 4.67-4.98 due to the addition of acid to a growing culture.  We used a 

different strain in the present study and therefore, strain variation might have contributed to 

differences in freeze-thaw resistances (75, 76) observed in results of the present study 

compared to those previously mentioned (333).  A L. monocytogenes mutant lacking σ
B
 had 

only partial resistance to freeze-thaw cycles compared to the parent strain (333).  

Wemekamp-Kamphuis et al. (333) suggested that the acid adaptation response which caused 

resistance may not fully be linked to σ
B
.  Okada (226) described the presence of multiple 

alternative sigma factors, which may play a role in stress response of L. monocytogenes.  Any 

resistance may not be attributed to just one physiological response as multiple stress 

responses may overlap (122).  The results of the present research do not support previous 

findings by Wemekamp-Kamphuis et al. (333) that acid shock leads to freeze-thaw resistance 

in L. monocytogenes. 

  Overall analysis of the data leads to the conclusion that decreases in viability of L. 

monocytogenes exposed to cycles of freezing and thawing were independent of any of the 

shock (acid, ethanol, oxidative and alkali) or adaptation (acid) treatments examined (Figure 6 

and Table 6).  A trend suggests a decreasing slope of 0.1578 over freeze-thaw cycles applied 
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(P<0.0001).  Other investigations have been made into freeze-thaw tolerance of L. 

monocytogenes.  In this respect cross protection was observed in cultures grown on agar at 

4°C compared to 37°C.  When cultures were grown in broth, the resistance of Listeria spp. to 

freeze-thaw occurred when cells were grown at temperatures of 37°C and not in 4°C cultures 

(17).  Cold shock (10°C for 1 h) increased resistance to freeze-thaw cycles.  Cold shock 

proteins were hypothesized as leading to freeze-thaw resistance in L. monocytogenes, while a 

moderate contribution of σ
B
 may have led to that type of resistance (333).  Some stresses 

such as starvation produce “spore-like” cells that might contribute to the freeze-thaw 

resistance as seen in Exiguobacterium, a psychrotrophic permafrost isolate (321).  Results of 

the present study indicated that decreases in viability were pronounced after the first freeze-

thaw cycle.  Based on results of research involving Saccharomyces cerevisiae, it was 

uncertain whether the observed resistance of that yeast to the freeze-thaw cycles was due to a 

subset of freeze-thaw resistant cells that survived freezing.  Additionally, exposure to 

hydrogen peroxide induced resistance to freezing in that yeast (231).  Despite reports of cross 

protection in other microorganisms, results of the present study indicate that certain stresses 

do not alter the resistance of L. monocytogenes Scott A to cycles of freezing and thawing. 

 Freeze-thaw injury in L. monocytogenes has been previously reported (77).  Freeze 

injury may cause cellular leakage, membrane damage and alternations to proteins and DNA 

in cells (14, 73, 340).  In the present study, L. monocytogenes did not show significant injury 

as measured by subtracting bacterial colony counts on selective media (MOX) from those on 

nonselective media (TSAYE).  The similar measurement of injury was made by Jasson et al. 

(148) and a similar phenomenon was reported.  The authors stated that the negative injury 
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value was a "mathematical concept" in the calculations and was seen when injury was 

assessed for heat, cold, and freezing stresses in L. monocytogenes.   

 Freeze injury was not reported as being significant when bacterial colony counts on 

non-selective media were compared to those on two selective media with chemical agents 

(Agar Listeria Ottavani & Agosti, ALOA) or agar medium with added salt (4% (w/v)) (148).  

In the current research, statistical significant injury in L. monocytogenes was not found 

following exposure of the pathogen to freeze-thaw treatments.  This research does not 

support past studies which have used TSAYE and TSAYE + NaCl as the nonselective and 

selective media, respectively (75, 77, 108, 206) and also MOX as the selective medium (48).  

The use of a nutrient rich base (columbia agar base) in the selective medium (MOX) may 

account for the unexpected differences in resuscitation of sub-lethally injured L. 

monocytogenes on MOX agar medium compared to the TSAYE medium.  Differences in the 

base media might result in different counts on media after a stress has been applied.  In 

freezing of E. coli cell damage can release cell constituents.  These cell constituents such as 

polypeptides may have acted to protect and enhance the recovery of other cells (213).  This 

may account for lower injury percentages and reduced impact of freezing on cells, but has 

not been tested in the present study.  Further research should be conducted to test these 

hypotheses in L. monocytogenes Scott A.  Additional research could be conducted on 

analyzing the impact of each particular selective agent on resuscitation of sub-lethally injured 

L. monocytogenes.   

Various stresses associated with food processing methods may cause injury to one or 

more vital structures and functions in bacteria (42).  Considering that damaged bacterial 

structures or functions may or may not be sensitive to certain selective agents, careful 
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selection or development of selective agar medium for a particular stress is needed to ensure 

accurate evaluation of sub-lethally injured L. monocytogenes in foods and food processing 

environments.  In addition, development of non-selective agar media for optimal 

resuscitation of sub-lethally injured L. monocytogenes is also warranted because sub-lethally 

injured microorganisms can have fastidious nutritional requirements until they repair their 

injury.     

 The importance of high hydrostatic pressure in the food industry has escalated over 

the past years as an increasing number of food processors install commercial units (41, 125).  

The use of stressed L. monocytogenes in high pressure research has received recent attention.  

Studies have been performed investigating the impact of growth phase (119, 335), water 

activity (120), heat shock (121), cold shock (332) and acid shock (333) on survival of L. 

monocytogenes exposed to subsequent high hydrostatic pressure treatment.  Pressure 

resistance has been reported to vary between strains of L. monocytogenes (286).  The aim of 

this research was to assess the impact of complete nutrient starvation on the barotolerance of 

L. monocytogenes.   

 Reductions of starved L. monocytogenes were seen in the order of 1.68 Log CFU/ml 

after 2 days of starvation in 0.85% NaCl after which viable populations of the pathogen 

remained relatively constant during the remainder of the study.  Reductions in viable counts 

from 1-3 Log10 CFU/ml have been reported in the literature as being a common response to 

starvation.  Mendonca et al. (199) noted that a decrease in the starved population of L. 

monocytogenes based on plate counts were 1.5 Log CFU/ml.  Similar decreases in starved 

populations of S. aureus, E. coli and Salmonella typhimurium have been seen (284, 295, 

327).  The apparent stability in viable numbers of starved cells following an initial decrease 
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in viability has been hypothesized to be related to cryptic growth and nutrient support for the 

maintenance of the remaining population (128).  Viable-but-not-culturable (VBNC) cells 

may exist in these starved populations during a “dormant” type cell phase (199, 257).  

Increased adhesion during starvation may contribute to clumping of cells and thus a 

seemingly lower viability when examining cells using plate count methods (40, 126).  This 

proposed explanation for the decrease seen in viable counts has not been addressed here.  

Further research should be conducted to examine the impact of VBNC state and adhesion 

proteins on the initial decrease in viability of L. monocytogenes during starvation.  

 The initial decrease in viability of L. monocytogenes Scott A resulted in variation of 

reductions from 1.10 to 3.34 Log CFU/ml (Figure 8).  A lower reduction represents greater 

resistance of the pathogen to the pressure treatment.  The initial reductions were large in 

some instances of starvation treatment and less as L. monocytogenes was starved for a greater 

number of days.  While not statistically significant, these results represent biologically 

significant differences.  The lack of statistical significance may be attributed to larger 

variations seen in the data.  This initial large decrease in viability due to pressurization was 

also reported for other pressurization experiments involving L. monocytogenes (286).  The 

initial reductions might be due to populations of a L. monocytogenes sample that do not have 

uniform pressure resistance.  The pressure death kinetics relating to initial pressure treatment 

may differ greatly depending upon strains as well (8, 158, 262, 286).  Decreases consistent 

with the ones seen in this study (1-3 Log CFU/ml) were seen after viability was measured 

during come-up pressurization at both 700 MPa and 500 MPa.  Multiple strains of L. 

monocytogenes including Scott A exhibited these dramatic decreases when exposed to 700 

MPa for 0.1 seconds and L. monocytogenes Scott A demonstrated this phenomenon after 
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treatment with 500 MPa for 0.1 seconds.  This pattern of decreases due to initial 

pressurization was not observed in treatment with 300 MPa in that study (323).  Although 

pressure is exerted isostatically in high pressure processing, cell populations of L. 

monocytogenes did not all exhibit the same outward signs of cellular damage after 

pressurization (262).  In the present study, variations in pressure resistance observed in L. 

monocytogenes especially at days 6 and 8 of starvation might be attributed to a transitional 

state in the physiology of the starved cells in which not all of the cells attained the same 

extent of stress hardening and resistance to high pressure.       

The pressure resistance of L. monocytogenes observed once the samples were starved 

might relate to the presence of free water within the cell (120, 335).  Starvation may induce 

shortening and widening of cells (128, 171) or condensing of cytoplasm (335) which may 

lower the amount of free water in the cytoplasm.  The impact of protein denaturation in high 

pressure treatments relates to water through hydration and refolding of proteins.  Lowered 

intracellular water activity might result in proteins that are less irreversibility denatured and 

thus facilitate a greater extent of reestablishment of native protein structure and function 

(286, 343).  Wen et al. (335) hypothesized that in long term survival of cells there may be a 

decrease in water activity within the cells.  That study also exhibited an increased 

barotolerance in L. monocytogenes upon long term survival.  This similar phenomenon may 

be present in complete nutritionally starved cells as similar alterations to cell morphologies 

may be present.  Other increased pressure resistances due to starvation stress have been 

reported for Lactobacillus spp. (276).   

For the food industry, starvation in foodborne pathogens is an important phenomenon 

because water used in the cleaning and rinsing of food contact surfaces general offers a low 
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nutrient environment for microorganisms.  In this respect, stress from extended exposure to a 

nutrient-depleted environment is known to produce microbial resistance to subsequent 

chemical and physical stresses (153).  

 Based on the results of the present study, starved L. monocytogenes  may survive high 

pressure treatments that may otherwise inactivate non-starved cells. The development of high 

pressure processes for destroying L. monocytogenes while maintaining desirable quality 

characteristics of food depends on accurate evaluation of the organism’s barotolerance (D-

value).  Even small differences in high pressure D-values can have a significant effect on the 

antimicrobial efficacy of high pressure processing because of the exponential nature of 

microbial inactivation by this technology.  Further research is needed on the resistance of 

other stressed pathogens to high pressure processing.  This would offer food processors with 

more realistic, conservative information on microbial resistance to high pressure and permit 

the design of adequate pressure treatments that ensure the safety of high pressure treated 

foods.  

Resistance to other processing technologies such as thermal processing has been 

shown.  Lou and Yousef (183) found that hydrogen peroxide, acid and ethanol stress could 

induce resistance to heating in L. monocytogenes.  Resistance to heating was shown in L. 

monocytogenes exposed to alkali treatment, but prior exposure to chlorine lead to a 

susceptibility to heating (303).  UV resistance was seen in L. monocytogenes populations that 

were acid shocked (197).  Starved L. monocytogenes had seen a resistance to irradiation 

treatments (199).  These studies and the current research suggest that resistance of stressed 

cells to different food processing technologies may exist.  There is an urgent need to further 

investigate potential of environmental stresses to cross protect pathogens against new and 
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emerging food processing and preservation technologies and antimicrobial food 

preservatives. 

The present research is of great significance to the food processing industry.  The fact 

that prior stresses tested do not elicit a resistance of L. monocytogenes to freezing may allow 

processors to continue to use sequential minimal processing techniques on foods destined to 

be frozen without increasing the food safety risks regarding enhanced survival of L. 

monocytogenes in foods that are subjected to freeze-thaw cycles.      
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CONCLUSIONS 

The following conclusions are made based on the results of the present study: 

1. Starvation of L. monocytogenes Scott A in physiological saline at ambient 

temperature increases the resistance of this organism to high hydrostatic pressure 

2. Starvation of L. monocytogenes Scott A in physiological saline at ambient 

temperature for 8 to 12 days produces the highest pressure resistance in the pathogen 

3. Prior environmental stresses tested in the present study do not alter the sensitivity of 

L. monocytogenes Scott A to freeze-thaw cycles. 

4. The extent of sub-lethal injury in surviving populations of L. monocytogenes Scott A 

that have been exposed to stress prior to freezing, is not significantly different from 

that of non-stressed populations.    
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FIGURES AND TABLES 

 

 

Figure 1.  Viability of acid shocked (pH 4.0, 4.5, 5.0, 5.5 or 6.0) Listeria monocytogenes Scott A 

after multiple freeze-thaw cycles.  Viability data represents mean Log CFU/ml ± standard deviation.  

"Blue" color represents control treatment.  "Red" color represents pH 6.0.  "Green" color represents 

pH 5.5.  "Purple" color represents pH 5.0.  "Light blue" color represents pH 4.5.  "Orange" color 

represents pH 4.0. 
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Figure 2.  Viability of oxidative shocked (H2O2; 500, 250, 150 or 50 ppm Listeria monocytogenes 

Scott A after multiple freeze-thaw cycles.  Viability data represents mean Log CFU/ml ± standard 

deviation.  "Blue" color represents control treatment.  "Red" color represents 50 ppm.  "Green" color 

represents 150 ppm.  "Purple" color represents 250 ppm.  "Light blue" color represents 500 ppm.   
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Figure 3.  Viability of alkali shocked (pH 8.0, 9.0, 10.0, 10.5 or 11.0) Listeria monocytogenes Scott 

A after multiple freeze-thaw cycles.  Viability data represents mean Log CFU/ml ± standard 

deviation.  "Blue" color represents control treatment.  "Red" color represents pH 8.0.  "Green" color 

represents pH 9.0.  "Purple" color represents pH 10.0.  "Light blue" color represents pH 10.5.  

"Orange" color represents pH 11.0. 
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Figure 4.  Viability of ethanol shocked (0.5, 1.0, 1.5 or 2.0%) Listeria monocytogenes Scott A after 

multiple freeze-thaw cycles.  Viability data represents mean Log CFU/ml ± standard deviation.  

"Blue" color represents control treatment.  "Red" color represents 0.5%.  "Green" color represents 

1.0%.  "Purple" color represents 1.5%.  "Light blue" color represents 2.0%. 
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Figure 5.  Viability of acid adapted Listeria monocytogenes Scott A after multiple freeze-thaw 

cycles.  Viability data represents mean Log CFU/ml ± standard deviation.  "Blue" color represents 

Non Acid Adapted cells.  "Red" color represents Acid Adapted cells.  
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Figure 6.  Viability of exponentially grown Listeria monocytogenes Scott A after multiple freeze-

thaw cycles. 
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Table 7.  Percent injury (mean percent ± standard deviation) of acid adapted and non-adapted Listeria 

monocytogenes Scott A after exposure to freeze-thaw cycles.  

  Acid Adaptation 

Freeze-Thaw 

Cycles Non-Adapted Adapted 

0 -13.1 ± 17.2 3.89 ± 19.6 

1 15.2 ± 6.55  16.8 ± 7.38 

2 4.37 ± 5.47 11.1 ± 6.06 

3 36.1 ± 39.12 -52.6 ± 142.9 

4 -5.75 ± 14.37 6.01 ± 28.8 

 

 

 

 

 

Table 8.   Percent injury (mean percent ± standard deviation) of oxidative shocked (H2O2, 50, 150, 

250 and 500 ppm) Listeria monocytogenes Scott A after exposure to freeze-thaw cycles. 

  Oxidative Shock 

Freeze-Thaw 

Cycles Control 50 ppm 150 ppm 250 ppm 500 ppm 

0 17.6 ± 13.7 12.8 ± 20.5 20.2 ± 14.8 13.7 ± 18.9 11.3 ± 6.56 

1 -5.47 ± 14.6 19.4 ± 28.4 8.54 ± 9.10 8.56 ± 19.5 14.1 ± 8.85 

2 5.65 ± 1.56 29.2 ± 49.9 17.9 ±72.6 9.43 ± 71.8 47.8 ± 22.4 

3 -29.4 ± 42.1 8.63 ± 5.49 -24.6 ± 74.3 13.7 ± 23.7 17.0 ± 13.2 

4 -14.0 ± 19.8 5.52 ± 24.8 9.79 ± 28.93 12.3 ± 12.8 37.9 ± 18.1 
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Table 9.  Percent injury (mean percent ± standard deviation) of acid shocked (HCl, pH 4, 4.5, 5.0, 5.5 

and 6) Listeria monocytogenes Scott A after exposure to freeze-thaw cycles. 

  Acid Shock 

Freeze-Thaw 

Cycles Control pH 6 pH 5.5 pH 5 pH 4.5 pH 4 

0 30.8 ± 20.5 -4.66 ± 36.7 -339.8 ± 621.2 17.0 ± 7.48 15.1 ± 15.9 8.95 ± 32.8 

1 25.3 ± 6.41 16.1 ± 9.38 17.3 ± 4.80 28.3 ± 5.31 15.6 ± 8.94 17.8 ± 11.6 

2 6.58 ± 26.1 12.1 ± 6.81 26.8 ± 6.55 21.6 ± 24.8 20.4 ± 4.90 27.0 ± 2.11 

3 15.3 ± 15.6 23.4 ± 17.7 2.53 ± 14.4 8.3 ± 15.2 31.6 ± 18.7 7.80 ± 23.2 

4 18.5 ± 16.8 23.1 ± 5.77 16.9 ± 14.2 1.31 ± 9.38 7.40 ± 23.1 22.5 ± 4.63 

 

 

 

Table 10.  Percent injury (mean percent ± standard deviation) of ethanol shocked (2.0%, 1.5%, 1.0%, 

and 0.5%) Listeria monocytogenes Scott A after exposure to freeze-thaw cycles. 

  Ethanol Shock 

Freeze-Thaw 

Cycles Control 0.50% 1% 1.50% 2% 

0 19.0 ± 4.45 6.12 ± 4.50 15.8 ± 18.5 17.4 ± 6.81 16.3 ± 13.0 

1 18.8 ± 16.3 2.63 ± 13.1 -4.70 ± 12.9 4.06 ± 12.4 -2.79 ± 17.4 

2 56.5 ± 52.6 -2.80 ± 29.0 27.9 ± 4.47 23.5 ± 22.2 16.5 ± 7.92 

3 -14.4 ± 5.13 8.87 ± 7.4 12.0 ± 18.2 4.08 ± 21.9 15.7 ± 25.9 

4 -3.81 ± 4.0 9.82 ± 5.47 21.9 ± 15.9 24.6 ± 3.85 24.3 ± 29.3 

 

 

Table 11.  Percent injury (mean percent ± standard deviation) of alkali shocked (NaOH, pH 8.0, 9.0, 

10.0, 10.5, and 11.0) Listeria monocytogenes Scott A after exposure to freeze-thaw cycles. 

  Alkali Shock 

Freeze-Thaw 

Cycles Control pH 8 pH 9 pH 10 pH 10.5 pH 11 

0 14.9 ± 33.7 5.36 ± 25.0 45.9 ± 46.1 8.97 ± 8.35 14.9 ± 11.4 18.0 ± 22.5 

1 21.9 ± 6.09 27.1 ± 11.6 34.0 ± 33.2 24.9 ± 16.3 26.8 ± 12.4 4.24 ± 22.4 

2 14.9 ± 7.71 15.8 ± 9.96 19.2 ± 13.2 12.4 ± 7.88 2.55 ± 14.7 10.8 ± 28.5 

3 16.0 ± 15.1 11.7 ± 21.6 6.73 ± 14.1 26.1 ± 9.34 -7.91 ± 32.6 19.6 ± 16.9 

4 29.3 ± 27.8 33.8 ± 6.58 12.6 ± 9.13 23.3 ± 24.6 8.52 ± 10.5 22.9 ± 15.0 
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Figure 7.  Viability of Listeria monocytogenes Scott A during 12 days starvation in 0.85% NaCl 

(w/v) at 25°C. 
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Figure 8.  Influence of starvation on the extent of reduction in initial viable  counts of L. 

monocytogenes Scott A following 1 second of exposure to high hydrostatic pressure (400 MPa). 
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Figure 9.  Changes in pressure resistance (D-Value) of Listeria monocytogenes Scott A during 

starvation in 0.85% NaCl (25°C).  Cells were exposed to 400 MPa for various times.  D-Values were 

calculated based upon the negative reciprocal of the slope of these treatment survival lines. 
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